首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 109 毫秒
1.
障碍物对管道天然气泄漏扩散影响的数值模拟   总被引:5,自引:0,他引:5  
基于Fluent软件的物质传输与反应模块建立了管道天然气泄漏扩散的模型,提出了研究障碍物影响管道天然气泄漏扩散的数值模拟方法.通过实际勘查,建立了简化的二维几何计算模型.通过模拟分析并对比管道天然气泄漏扩散区域有、无障碍物时的计算模拟结果(包括天然气在计算区域内的含量、速度等分布),得出了障碍物对天然气泄漏扩散的影响规律.模拟结果可以为控制天然气泄漏扩散事故提供一定参考.  相似文献   

2.
架空天然气管道泄漏扩散数值模拟   总被引:4,自引:3,他引:1  
针对天然气管道穿孔泄漏扩散问题,结合有限容积法,建立了天然气管道不同泄漏位置的CFD仿真模型,分别对天然气管道上部、下部、迎风侧及背风侧等4种工况的泄漏扩散进行了数值模拟。研究结果表明,下部泄漏比上部泄漏气体更贴近地面且不易扩散,且横向危险范围也比上部泄漏大30~70m;迎风侧泄漏与背风侧泄漏情况相似,但迎风侧泄漏危险区域的纵剖面面积更大,更危险。应用数值方法模拟管道穿孔扩散问题,给出了不同工况下的泄漏范围,为天然气管道泄漏的安全输送及安全抢修提供了理论依据。  相似文献   

3.
针对高原城市中压天然气管道泄漏情况,研究了多层、高层建筑物和风速对天然气管道泄漏和扩散的影响,利用CFD模拟计算软件分别对高原气压下中压A、中压B天然气管道的泄漏扩散进行数值模拟,并得到了泄漏后CH4的体积分数分布和危险区域。研究结果表明:高原城市中压A天然气管道泄漏孔处的质量流量与平原地区一致,不受气压影响,高原城市中压B天然气管道泄漏的危险区域随时间的增加保持不变或变小。  相似文献   

4.
针对管道中天然气的泄漏,尤其是含硫集输管道的泄漏将对周围环境造成极大的威胁,对平坦地区含硫化氢天然气管道泄漏扩散进行了数值模拟.模拟分析发现:静风条件下,天然气在大气中自由扩散稳定后,压力、速度和浓度分布基本对称,喷口附近、喷口垂直向上区域以及接近地面区域的硫化氢浓度很高,属于高危险区域;有风条件下,气体扩散范围增大,风不仅对污染物起输送作用,还起稀释扩散作用,但在地面附近影响效果并不明显,而随高度的增加,其效果将不断增强;在无风情况下,喷射区域基本在泄漏口正上方,而有风时,喷射区域发生弯曲;危险区域随着风速的增大而减小,静风时,其范围最大.模拟得出天然气管道泄漏点外扩散的规律能够为实际安全生产和应急抢险提供较好的参考依据.  相似文献   

5.
随着我国天然气事业的发展,天然气管道规模也在不断扩大,与此同时也带来了安全上的隐患,城市天然气管道泄漏事故频繁发生,严重影响了城市居民的生命及财产安全。主要介绍了城市天然气管道泄漏数值仿真和数值模拟的基本理论,考虑泄漏过程中风场对泄漏的影响,分析了近地面处风场的变化,建立了埋地天然气管道泄漏模型。设定泄漏扩散发生在大气环境,选取CFD软件对网格进行划分并进行局部加密,进行了风场的稳态模拟。在风场达到稳态后,改变后处理边界条件,再对泄漏进行瞬态模拟,得出天然气泄漏扩散随时间的变化规律,定量分析了风速对泄漏扩散的影响。结果表明,建筑物对风场存在干扰,在泄漏过程中气体聚集在近地面及贴近建筑物周围,随着风速的增加,稳态扩散高度降低,但风场对水平扩散的影响较小,风速越大泄漏气体稀释效果越明显,所造成的危险区域越小。  相似文献   

6.
针对埋地含硫天然气管道泄漏的实际情况,采用有限体积法,对埋地含硫天然气管道持续泄漏的甲烷及硫化氢体积分数进行了数值模拟。在模拟过程中,考虑了管道上层土壤作为多孔介质对气体扩散的影响,比较分析了同一时刻甲烷和硫化氢的危险区域,得出同一时刻硫化氢泄漏所造成的剧毒区域远大于且完全覆盖甲烷危险区域。对硫化氢和甲烷的共同影响区域,应同时采取防火防毒措施,而在硫化氢影响区域只需采取防毒措施。  相似文献   

7.
针对35MPa超高压输气管道在人口密集区域泄漏扩散问题,采用FLUENT软件,对不同气候条件下的埋深天然气管道泄漏情况进行了三维数值模拟,并给出了超高压天然气在不同风速条件下泄漏后H2S和CH4轴向和地表安全区域。在扩散过程中,天然气在浮力的作用下以向上扩散的形式发展,在不同的环境下风速和压力对扩散过程的影响不同,较大的风速和压力使天然气向更远的距离扩散,从而增大天然气爆炸下限和警戒浓度范围。研究结果可为泄漏现场人员和安全管理提供有效依据。  相似文献   

8.
建立了天然气管道在空旷地面发生泄漏的三维模型,对高速泄漏区域进行了网格细化。利用 CFD商业软件 FLUENT 6.3对泄漏过程进行模拟,考察了大气风速、泄漏初速度和泄漏口形状(圆形和菱形)对泄漏的影响。模拟结果表明,风速对天然气泄漏喷射射流角度有较大影响,扩散范围随扩散高度而增大;泄漏初速度对天然气喷射高度有较大影响,扩散高度随泄漏初速度的加快而变高;圆形泄漏口的硫化氢泄漏范围最宽。研究结果对加深长输天然气管道泄漏扩散规律的认识、事故的预防具有一定的意义。  相似文献   

9.
利用仿真模拟软件, 对架空天然气管道泄漏扩散进行数值模拟, 对比分析了泄漏方向及风速对泄漏扩散过程的影响。结果表明, 地面附近下风向危险范围大, 上风向相对安全, 地势较高处相对安全; 向上喷射时近地面天然气危险范围较小, 迎风喷射和向下喷射时危险范围较大; 迎风喷射时风速对危险范围的影响小于向下喷射时 风速对危险范围的影响, 在静风及低风速下天然气泄漏扩散范围较大。研究结果可为架空天然气管道泄漏的应急疏散、 救援提供理论依据和参考。  相似文献   

10.
含硫天然气泄漏扩散的三维数值模拟   总被引:2,自引:2,他引:0  
研究燃气管道的泄漏,目的在于定性和定量地分析评价泄漏可能带来的危害。基于FLUENT软件,用GAMBIT建立三维泄漏模型,对含硫天然气管道泄漏及扩散进行了三维数值模拟。结果表明:硫化氢的存在增加燃气管道的泄漏危险区域;在自由扩散状态下,泄漏气体主要集中在泄漏口上部,且危险区域较小;当存在环境风时,泄漏危险区域向下风向下移,形成气体聚集区域,而上风向气体较少。可见,硫化氢和环境风的存在,使含硫天然气泄漏扩散的危险范围增大。  相似文献   

11.
介绍了模式识别的概念、算法原理及应用该方法检测管网泄露的具体步骤,采用首末端仿真模拟的方法计算了测漏点的位置,解释了管网泄露点布设点个数的公式,提出了利用模式识别诊断天然气管网故障的方法.  相似文献   

12.
将氢气掺入现役天然气管道中混输是实现氢气大规模、长距离、低成本储运的有效方法,但是氢气的掺入会对天然气管道水力特性和安全等方面造成较大影响。为此,采用SPS软件对不同混氢比(均为摩尔分数)的天然气管道输送工况和泄漏工况进行仿真计算,探究掺氢对天然气管道水力特性、离心压缩机运行特性、泄漏后截断阀压降速率及泄漏量的影响。结果表明,掺入氢气会降低天然气管网的输气效率和压缩机性能,可通过增大压降的方式确保管道输气效率不变;在相同天然气需求下,随混氢比的增大,管道动态压力波动减小;掺氢天然气管道泄漏后,随着混氢比的增加,压降速率和泄漏量均增大,管线截断阀压降速率阈值设定值也要相应增大。该研究成果为确定天然气管道最大混氢比的研究奠定了一定基础,为天然气管道掺氢输送工艺的确定提供了有效借鉴。  相似文献   

13.
开展了模拟天然气管道泄漏检测与定位研究,研究利用小波包分析技术,首先对声发射信号进行分解,再对衰减的信号在不同频率段内进行有效的补偿,然后对分解的信号进行小波包重构,利用互相关技术计算两个声发射传感器接收到的声发射信号的时差,进而进行声发射源定位。对模拟天然气管道泄漏的声发射信号的处理结果表明该方法能够有效实现管道泄漏检测与泄漏源定位,并且泄漏源的定位精度高,误差〈8%。如能将这一技术改进并实现长距离管道泄漏检测与定位,将具有广阔的应用前景。  相似文献   

14.
为评价浅海海底天然气管道泄漏事故后果,根据计算流体力学与多相流动理论,针对国外某天然气管道海峡穿越段,建立浅海海底管道泄漏扩散过程的计算模型。将泄漏孔径、泄漏速率、水流速度3个主要影响因素作为条件变量,模拟不同情况下的气液两相运动过程。结果表明,水下气体扩散分为三个阶段,即泄漏口上方形成气团、气团呈蘑菇状上升、气团由大气泡分裂为小气泡;泄漏孔径和泄漏速率对水下气体扩散到水面的时间具有显著影响,泄漏孔径与泄漏速率越大,气体泄漏量越大;气体泄漏量越大,水下气团体积越大,到达水面的时间越短;水流速度显著影响气体的扩散轨迹,水流速度越大,气体运动轨迹与海底的夹角越小,沿海流方向扩散的距离越远。研究结果可为水下天然气管道泄漏事故应急处理提供一定的科学指导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号