首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
MBR-厌氧/缺氧交替工艺处理生活污水的试验研究   总被引:1,自引:0,他引:1  
提出一种提高生活污水脱氮除磷的交替式厌氧/缺氧-膜生物反应器(A—A/A—M)工艺.该工艺由一个交替缺氧/厌氧反应池和内置膜过滤单元的好氧池组成.通过改变好氧池底部回流污泥流向使缺氧和厌氧环境在两个独立反应器(A和B)内依次形成,以实现同步缺氧反硝化脱氮、厌氧释磷及反硝化聚磷菌的部分吸磷等过程.好氧反应器采用连续曝气方式实现硝化、过量吸磷及膜污染的控制.结果表明:A—A/A—M工艺可以实现污染物的高效去除,对COD,TN,TP的平均去除率分别达到93%,67.4%和94.1%.  相似文献   

2.
A/ASBR中PHB转化与反硝化吸磷的关系研究   总被引:10,自引:0,他引:10       下载免费PDF全文
通过COD浓度对A/ASBR反硝化除磷脱氮系统的影响试验表明,过高或过低的COD都不利于反硝化除磷系统的正常运行,当COD=220~300mg/l时,可以获得较为理想的处理效果.发现了缺氧段残存的外碳源有机物和厌氧储存的胞内碳源PHB对反硝化除磷过程的影响;试验结果进一步表明以PHB为碳源的反硝化除磷过程中,PHB的消耗与反硝化除磷脱氮具有良好的相关关系,并且2 mg NO3--N的转化可以促进1 mg PO3-4-P的吸收.  相似文献   

3.
目的 研究双泥生物膜亚硝化反硝化除磷工艺的最佳后曝气池水力停留时间(HRT).方法 通过改变后曝气池出水口位置的方法调节后曝气池HRT,研究不同后曝气池HRT条件下,双泥生物膜工艺的脱氮除磷性能和COD去除率的变化.结果 在后曝气池HRT为2.4h的条件下,系统COD平均去除率为66.68%,NH4-N平均去除率为88.41%,出水NH4+-N平均质量浓度为6.26 mg/L,大部分NH4-N都在前段反应中去除,同步亚硝化反硝化不受COD质量浓度的限制;TP平均去除率在94.88%左右,厌氧释磷率稳定在45.24%左右,缺氧吸磷率最大,维持在54.59%.HRT为4.8h时,TP平均去除率降至59.48%,可利用的COD质浓度逐渐减少,使运行后期的NH4-N氧化率下降.结论 对于长期运行的双泥生物膜亚硝化反硝化除磷工艺,保持后曝气池HRT为2.4h,系统出水COD值可满足排放标准,脱氮效果稳定,除磷效果最好.  相似文献   

4.
A^2O工艺处理生活污水反硝化除磷研究   总被引:1,自引:0,他引:1  
采用A2O工艺处理低ρ(C)/ρ(N)实际生活污水,研究其脱氮除磷性能和反硝化除磷特性.试验结果表明:处理低ρ(C)/ρ(N)实际生活污水时,在不设置预缺氧区、无外加碳源的情况下,A2O工艺的脱氮除磷能力受到严重影响,出水ρ(NO3--N)高达35 mg/L,TN平均去除率仅为47.1%;此时A2O工艺除磷能力较差,缺氧段有释磷现象的发生.当设置预缺氧区后,A2O工艺的脱氮除磷能力明显提高,TN平均去除率可达60.7%,PO43--P平均去除率为55.9%;此时系统存在反硝化除磷现象,缺氧段除磷率为31.4%~46.9%.在设置预缺氧区的基础上,通过外加碳源,提高进水ρ(C)/ρ(N),可进一步提高系统的脱氮除磷能力,TN平均去除率可达74.4%,出水ρ(PO34--P)小于0.5 mg/L,缺氧段除磷率高达66.2%~90.9%.同时研究了外加碳源情况下污泥内PHA成分、含量及糖原含量在A2O系统内的沿程变化趋势.经过驯化、富集,反硝化聚磷菌相对于全部聚磷菌的代谢活性从31.1%提高到74.7%.A2O工艺反硝化除磷能力的增强,提高了碳源的利用效率.  相似文献   

5.
进水COD及投加方式对A2O-BAF工艺反硝化聚磷的影响   总被引:1,自引:0,他引:1  
为了提高系统的反硝化除磷脱氮效率及碳源可利用性,主要研究了进水COD及投加方式对A2O-BAF工艺反硝化聚磷的影响.试验设计了不同的进水ρ(C)/ρ(P)(25 ~71)及COD投加方式(1次投加、3次投加、连续投加),分别考察各污染物的去除规律.试验结果表明:当ρ(C)/ρ(P)≤34时,A2O中出现磷和硝态氮的累积,去除效果恶化;当45≤ρ(C)/ρ(P)≤59时,磷的去除率稳定在90%左右,出水ρ(P)低于0.5 mg·L-1;当ρ(C)/ρ(P)≥63时,磷的去除率随ρ(C)/ρ(P)的增加而下降.当ρ(C)/ρ(P)≥39时,ρ(C)/ρ(P)的变化对COD和TN去除率影响不大,平均去除率分别高于83%和76%;当ρ(C)/ρ(P) =57时,系统处理效果最佳.相同质量浓度的COD,连续投加的方式可以提高碳源的可利用性,增加厌氧释磷量,提高缺氧反硝化除磷脱氮速率.  相似文献   

6.
目的解决在新的反硝化同步脱氮除磷工艺中,同一处理流程很难达到除磷脱氮过程协调稳定运行的问题.方法在SBR反应器中用传统活性污泥做为种泥驯化反硝化菌脱氮除磷,并进行静态试验改变其温度、COD质量浓度及不同运行阶段时间,以此来考察其生长和控制特性以及影响参数.结果试验表明反硝化同步脱氮除磷工艺中温度,COD浓度,电子受体浓度,以及运行时间等因素对其运行具有决定性作用,并且对于同一周期来说,厌氧和缺氧时间比维持在1∶2,反硝化作用除磷最佳.结论分析结果表明反硝化作用除磷的最佳温度为30℃,而最佳COD质量浓度为140 mg/L时反硝化作用较稳定并能达到同步除磷脱氮的效果.  相似文献   

7.
A/O脱氮工艺影响因素及其控制策略的研究   总被引:13,自引:0,他引:13  
为有效提高A/O工艺脱氮效率,以淀粉废水为研究对象,系统考察了DO、硝化液回流量、污泥回流量、SRT、进水COD与TN质量质量浓度比和HRT等因素对脱氮效率的影响,并建立了相应的控制策略,如以出水氨氮质量浓度来控制好氧区DO值,以缺氧区硝酸氮质量浓度来控制内循环回流量,以进水COD与TN质量质量浓度比或出水总氮质量浓度来控制外碳源投量,最后根据上述分析建立了A/O工艺硝化与反硝化反应专家控制系统。  相似文献   

8.
纪庄子污水处理厂反硝化聚磷菌作用初探   总被引:8,自引:0,他引:8  
人们已经认识到反硝化聚磷茵(DPB)也是一种很重要的除磷茵.为了有效地评价除磷脱氮工艺,有必要研究污泥中微生物的特性.笔者在试验中所用污泥混合液取自纪庄子污水处理厂,对反硝化除磷茵(DPB)厌氧释磷、好氧/缺氧吸磷行为进行了可行性研究,比较了好氧除磷污泥与缺氧除磷污泥中微生物的不同特性和不同除磷活性.  相似文献   

9.
为全面考察反硝化聚磷菌(DPB)在不同环境条件下的脱氮除磷效能,利用厌氧/好氧/缺氧(A/O/A-SBR)反应器,以人工配水培养驯化反硝化聚磷颗粒污泥.通过正交试验,综合考察不同碳源类型、碳源质量浓度、进水温度和pH条件下系统的脱氮除磷效能.结果表明:以丙酸钠为碳源,在进水COD质量浓度400 mg/L、水温25℃、pH为7的条件下,DPB对于有机物的去除效能最高;以丙酸钠为碳源、COD质量浓度400 mg/L、进水温度15℃、pH为7条件下,DPB的脱氮效能最高;以乙酸钠为碳源、COD质量浓度400 mg/L、进水温度25℃、pH为8时,DPB的除磷效能最高.温度对系统COD降解和脱氮效能影响最大,pH的影响最小;pH对系统的除磷效能影响最大,碳源类型的影响最小.  相似文献   

10.
探讨了碳氮比较低(C/N〈5)时,不同原水进水C/N对MUCT工艺性能的影响。试验结果表明:随着进水C/N的增加,出水TN去除率升高,最高为84.1%,缺氧区2出水NO3^--N浓度从2.76mg/L降低到0mg/L;随着C/N的增加,好氧区的硝化速率下降,好氧吸磷率增加,缺氧区2吸磷常数有所增加,和利用复杂的有机物做为碳源的吸磷速率常数接近。  相似文献   

11.
A~2O工艺中的反硝化除磷及其强化   总被引:3,自引:0,他引:3  
为研究A2O工艺中的反硝化除磷现象及影响因素,采用52.5L的A2O反应器处理实际污水.结果表明:正常运行的A2O工艺中存在反硝化除磷现象,在系统HRT为8h,污泥回流比为70%和内回流比为250%的情况下,A2O系统中缺氧区吸磷占总吸磷量的36%左右,序批试验表明,此时反硝化除磷菌占总除磷菌的35.4%.原水的C/N比越低,反硝化除磷的比例越高,但是过低的C/N比会导致TN去除率低下.将缺氧区和好氧区的容积比从1/1扩大到5/8,延长反硝化除磷反应的时间,TN去除率可从62%提高到70%左右,相比单纯提高内回流比更节能.强化A2O工艺中的反硝化除磷,为传统A2O工艺在处理低C/N比污水时提高脱氮除磷效率提供了一个新思路.  相似文献   

12.
A 24 L working volume reactor was used for the research on simultaneous phosphorus (P) and nitrogen (N) removal by denitrifying dephosphatation in an anaerobic-oxid-anoxic-oxid sequencing batch reactor((AO)2SBR) system. The durations of each phase are: anaerobic 1.5 h, aerobic 2.5 h, anoxic 1.5 h, postaerobic 0.5 h, settling 1.0 h, fill 0.5 h. The successful removal of nitrogen and phosphorus is achieved in a stable (AO)2SBR. The effluent P concentrations is below 1 mg/L, and the COD, TN and P average removal efficiency is 88.9 %, 77.5 % and 88.7 %, respectively. The batch experiment results show that the durations of aerobic and anoxic phase influence the P removal efficiency. Some feature points are found on the DO, ORP and pH curves to demonstrate the complete of phosphate release and phosphate uptake. These feature points can be used for the control of (AO)2 SBR.  相似文献   

13.
研究了进水N/P对MUCT(modified university of cape town)工艺脱氮除磷性能的影响。结果表明,在低N/P(N/P=3.5~5.5)条件下,当进水N/P升高时,混合液回流2比值加大,缺氧吸磷率增加,对TP的去除率在93%以上;在高N/P(N/P=7.7~10.7)条件下,当进水N/P升高时,第2缺氧区硝酸盐氮浓度增加,缺氧吸磷率增加;随着N/P的升高,氮的同化去除率下降,同化作用对总氮的去除贡献减小;随着N/P的升高,好氧吸磷速率下降,硝化速率增加,出水氨氮浓度较低,在3.3 mg/L以下。  相似文献   

14.
以污水处理厂氧化沟污泥为泥种,采用进水低碳高磷、两阶段的运行方式进行反硝化聚磷污泥的培养,约100 d成功驯化培养出反硝化聚磷污泥.第1阶段以厌氧/好氧的运行方式驯化好氧聚磷污泥,运行约40 d,最大释磷量、最大聚磷量和最大除磷量分别可达到77.2、89.4、25.0 mg/L,表现出较强的聚磷能力;第2阶段采用厌氧/缺氧/好氧的运行方式驯化反硝化聚磷污泥,运行60 d,缺氧聚磷量占总聚磷量的百分比呈上升趋势.硝化污泥经过100 d的驯化可去除约50 mg/L的氨氮,硝化率基本稳定在98.5%以上.硝化速率本符合零级动力学方程,比硝化速率常数为0.0024h-1;好氧聚磷速率和缺氧聚磷速率基本符合一级动力学方程,速率常数分别是0.377、0.740 g/(L·h-1).利用驯化培养成功的反硝化聚磷污泥和硝化污泥进行了A2N-SBR试验,结果表明:在进水COD、氨氮和磷分别为188.0、54.8、7.25 mg/L时,去除率分别为93.5%、76.7%和94.1%,驯化培养的双污泥具有良好的脱氮除磷效果.  相似文献   

15.
连续流双污泥反硝化同时除磷系统影响因素   总被引:3,自引:0,他引:3  
目的为了深入研究连续流双污泥反硝化同时除磷系统的主要影响因素,确定系统最佳运行条件.方法以生活污水为研究对象,保持其他运行条件不变,分别改变C/N、BFR、PAHRT的大小,监测系统的除磷脱氮效果,确定系统的最佳运行条件.结果进水C/N(COD/TN)与TP、TN的去除效果密切相关,在3.8~6.0之间,系统可长期稳定运行,对TN、TP、COD的去除率可分别达到83%、92%和86%,而系统的最佳C/N比是在4~5之间;同时BFR在0.33~0.38之间控制得越低TN去除效果越好,如果BFR低于0.28或高于0.48,均会影响系统对TN、TP的去除;PAHRT也不宜过长,如果超过60 min并长时间运行,会破坏污泥沉淀性能,减少聚磷菌群中反硝化聚磷菌的比例,影响系统稳定运行.结论系统进水最佳C/N为4~5,BFR为0.33~0.38,PAHRT应控制在20~30 min较为适宜.  相似文献   

16.
内循环对Orbal氧化沟系统生物脱氮除磷的影响   总被引:1,自引:0,他引:1  
试验采用实际生活污水,利用改进的Orbal氧化沟中试系统(其中,氧化沟主体容积460L),在低溶解氧条件下研究了内循环对系统的影响,实现了良好的脱氮除磷效果.增加内循环回流比,可以增强系统对氨氮负荷的抗冲击能力,提高脱氮效果,但是除磷效率降低.考虑COD、氮和磷等指标,控制系统内循环回流比为1,可得到良好的处理效果.对系统进行物料平衡计算,结果表明,聚磷菌约吸磷0.18 mg P/mg COD,与文献值接近.试验发现,系统中存在着反硝化聚磷菌(DPAOs),其比吸磷速率为13.2 mg P/(g VSS·h),根据缺氧与好氧比吸磷速率之比计算DPAOs约占总PAOs数量的23%.  相似文献   

17.
反硝化除磷颗粒污泥的培养与除磷性能   总被引:2,自引:0,他引:2  
以普通絮状污泥为接种污泥,人工配制生活污水,采用厌氧/缺氧/好氧的运行方式,通过在缺氧段投加硝酸盐氮和控制选择压,经98 d的培养与调整在SBR中获得具有反硝化除磷功能的颗粒污泥.稳定运行的颗粒污泥粒径主要在0.3~0.5 mm,SVI约为45 mL/g,ρ(MLSS)约为4 000 mg/L.具有反硝化除磷功能的颗粒污泥对COD、氨氮和磷酸盐的去除率分别可达88%、96%和90%.通过分析磷的去向及X射线衍射检测结果可知存在颗粒污泥的磷酸盐沉淀除磷现象.培养的反硝化除磷颗粒污泥除生物除磷外,还具有磷酸盐固化于污泥颗粒方式除磷.  相似文献   

18.
体积比对分段进水工艺处理低浓度废水性能的影响   总被引:1,自引:0,他引:1  
采用改良A2/O四点分段进水工艺处理低浓度、低碳氮比城市生活污水.在HRT为8.7 h、SRT为15 d、污泥回流比为75%、进水流量分配比为20∶35∶35∶10、好氧段ρ(DO)为1~1.5 mg/L条件下,通过调整不同的厌氧/缺氧/好氧体积比,分析体积比对污染物去除性能的影响.结果表明:不同的体积比对COD、氨氮的去除基本无影响,但对TN、TP去除影响较大.当厌氧/缺氧/好氧体积比为4∶8∶10时,对污染物去除效果最佳,出水COD、氨氮、总氮、总磷质量浓度分别为28.12、0.58、9.26、0.43 mg/L,进水碳源有效利用率达72.4%.通过逐步减少好氧段体积以提高缺氧段体积的策略,可使进水碳源在各缺氧段或厌氧段被充分利用,同时有利于反硝化除磷菌的富集,DPAOs最高比例为20.9%.  相似文献   

19.
以反硝化除磷过程中N2O的减量化为目的,分别以乙酸、乙酸和丙酸的混合物、丙酸为碳源,研究了碳源类型对系统中N2O产生的影响。结果表明:以乙酸为碳源时反硝化除磷过程中N2O的产生量最多,以乙酸和丙酸混合物为碳源时N2O产量次之,以丙酸为碳源时N2O产量最少。使用乙酸、乙酸与丙酸混合物和丙酸为碳源时,N2O产生量占总氮(TN)去除的比例分别为8.67%、1.48%和0.72%。不同碳源导致了系统反硝化进程的不同:以丙酸为碳源时,硝酸盐与亚硝酸盐还原速率比值最低,系统中几乎没有亚硝酸盐的积累;同时,在混合酸和丙酸系统中,聚3-羟基戊酸盐(poly-hydroxyvalerate, PHV)成为聚羟基烷酸酯(poly-β-hydroxyalkanoates,PHA)的主要成分,PHV量的增加导致N2O产量减少。因此,以丙酸作为反硝化除磷系统的外加碳源对N2O的减量化有明显优势,但该过程中系统对氮和磷的去除效果还需要进一步优化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号