首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 437 毫秒
1.
加热原油管道停输热力计算   总被引:16,自引:0,他引:16  
在加热原油管道停输过程中 ,油品温度下降 ,粘度上升 ,有时甚至出现冻管事故 ,常常给再启动带来困难。合理地进行热油管道停输后的温度计算 ,模拟原油的凝固过程 ,有利于确定安全停输时间 ,制订再启动方案。针对加热原油管道停输后油品、管道及周围介质的相互关系和它们的不稳定传热 ,提出了热力计算的数学模型。该模型综合考虑了有关物性参数随温度的变化以及在冷却过程中油品的凝固问题。采用保角变换和盒式积分法对数学模型进行了处理 ,并构造出问题的差分方程。通过数值计算分析管道停输后油品冷却和冷凝规律 ,运用文中所提出的方法 ,对加热原油管道停输温度变化和冷凝过程进行了计算 ,与实测数据和文献中计算方法相比 ,该计算结果更符合实际情况  相似文献   

2.
热油管道停输温降规律的研究是确保管线安全启动的首要条件。埋地长输管道沿线地质条件复杂, 常穿越河流、湖泊,导致部分管线水下敷设,由于没有周围土壤的蓄热作用,在停输过程中水下管段的温降往往决定 了整条管线的停输时间。随着海上油气的开采,水下管道安全停输规律的研究显的更为重要。利用FLUENT 软 件,采用“焓-多孔度”技术模拟水下管道停输过程管内原油温降规律并考虑了原油凝固潜热对温降的影响,得出了 不同时刻管内原油凝固区、混合区、液油区的位置。结果表明,管道停输初期管内原油温度整体下降较快,中后期由 于原油凝固释放潜热且凝油层厚度不断增加,热阻增大,大大降低了原油温降速率,模拟结果与实际吻合较好。  相似文献   

3.
根据管道热平衡原则和圆柱体温度分布公式,用准稳态方法探讨了地面保温管道的安全停输时间的计算问题。计算过程考虑了大气温度变化和起始停输时间点对安全停输时间的影响。计算结果表明:安全停输时间不仅与油品温度、大气温度有关,而且还与起始停输时间点有关;随着停输时间的延长,起始停输时间点对安全停输时间的影响逐渐减小;当油品温度提高到一定程度后,试图再以继续提高油品温度来延长安全停输时间效果不大,而且也不经济。  相似文献   

4.
地面保温管道的安全停输时间计算   总被引:1,自引:0,他引:1  
根据管道热平衡原则和圆柱体温度分布公式,用准稳态方法探讨了地面保温管的安全停输时间和计算问题,计算过程考虑了大气温度变化和起始停输时间点对安全停输时间的影响,计算结果表明,安全停输时间不仅与油品温度,大气温度有关,而且还与起始停输时间点有关,随着停输时间的延长,起始停输时间点对安全停输时间的影响逐渐减小,当油品温度提高到一定程度后,试图再以继续提高油品温度来延长安全停输时间效果不大,而且也不经济。  相似文献   

5.
利用Fluent流体分析软件模拟海底管道停输温降过程,分析不同初始油温、不同环境温度下的温降过程,得出了与实际吻合较好的温降曲线。计算结果表明,管道停输0~20h温降速度很快,主要是因为该阶段管内原油的自然对流较强烈。停输20h后的一段时间内温降缓慢,降温在5℃以内,这是因为管内原油接近临界温度,原油黏度增大及蜡晶析出,使得自然对流强度减弱。初始油温和海水温度对停输温降影响非常明显。  相似文献   

6.
易凝高黏原油在加热输送过程中热量损耗严重, 遇故障停输后热量的散失更为迅速, 当所需停输的 时间超出安全停输时间时就会发生事故。因此, 研究原油的热力计算对管道的安全运行具有重要意义。对比了冬 夏两季原油停输温降的变化规律, 在停输时间不同的条件下, 对温降进行了数值模拟, 计算出原油停输前所需的出 站温度。对停输后的土壤和管道的温度场进行了三维数值模拟, 找出了出站温度不同时停输后原油和土壤温度场 的变化规律。在出站温度达到一定值后, 原油在所需的停输时间内可以保证安全再启动, 不会发生事故或造成安全 隐患。  相似文献   

7.
建立电伴热方式的稠油伴热管道二维非稳态模型,分析了管道的保温层厚度、伴热管个数以及位置参数对稠油管道安全停输时间的影响及其变化规律。研究结果表明,在单管伴热的情况下,管道的保温层厚度分别为60、70 mm和80 mm时,安全停输时间分别为26、30 h和34 h;在双管伴热的情况下,双管夹角的变化对安全停输时间的影响较小,安全停输时间约为36 h。  相似文献   

8.
采用OLGA软件建立了某油气混输管道几何模型,研究了管道停输和再启动过程中的瞬态流动规律。首先,分析了管道稳态运行时沿线温度、压力和持液率的分布特点,确定了沿线温度最小值所处位置及压力最大值所处位置,分析了环境温度和停输时间对运行参数的影响,确定了可保证温度最低点处原油温度高于其凝点的安全停输时间。在实际运行过程中,停输时间不应超过安全停输时间,否则容易出现管道凝管、启动压力过大等问题,威胁管道的安全运行。  相似文献   

9.
埋地热油管道停输三维非稳态传热过程的数值模拟   总被引:1,自引:1,他引:0  
针对埋地热油管道停输过程进行研究,结合有限差分法和有限容积法建立埋地热油管道正常运行及停输过程的非稳态传热模型,考虑了管道正常运行及停输过程中管内原油粘度,密度,比热,导热系数随温度的变化关系,同时考虑了停输过程原油凝固潜热对温降的影响,地表温度采用周期性边界条件,数值模拟了埋地热油管道运行至第二年3月末停输温降过程。研究表明,随着停输时间的延长,管道沿线各截面处管内原油固化过程各异且土壤温度场变化明显,确定合理停输时间,为管道安全启动提供理论指导。  相似文献   

10.
架空原油管道停输期间温降及原油凝固界面推进   总被引:5,自引:0,他引:5  
由于架空原油管道没有土壤的蓄热来减缓管内原油的热散失,架空原油管道的温降过程往往成为决定整条管道允许停输时间的关键。根据原油温度划分管内原油为纯液油区、凝油区和纯固油区,并假设凝油区以已凝固原油、固体骨架和液态原油为填充相的多孔介质区域,该区域随着温降过程向管心推移。考虑了凝固潜热和空气横掠管道对流换热对原油温降过程的影响,建立了空气、管道与原油相互耦合的传热模型,并进行了数值模拟,数值结果表明停输前期管内原油的温度整体下降较快;在停输中后期,由于凝固潜热的释放,凝油厚度增加使得热阻增大,大大减缓了原油温度的降低;对流换热系数沿管道周向分布不均,导致管内原油温度周向分布不均和凝固界面中心偏离管道中心。  相似文献   

11.
保温层失效比例对热油管道安全停输时间的影响   总被引:1,自引:1,他引:0  
针对热油管道的保温层由于特定原因而出现部分失效,进而导致在维修过程中安全停输时间难以控制的问题,结合有限容积法,建立了热油管道二维、非稳态模型。该模型考虑了凝固潜热的影响,对比分析了热油管在5种情况(即保温层未失效、1/8失效、1/4失效、1/2失效及全部失效)下的温降规律。在此基础上,运用SPSS软件,拟合了停输时间与热油的平均温度的关系曲线,最终确定了上述5种情况下的安全停输时间。研究结果表明,5种情况下管内热油温降规律基本相似,且安全停输时间分别为205、148、118、99和74h;由于凝固潜热弥补了部分散热损失,因此1/4失效和1/2失效情况下的安全停输时间差仅为19h。  相似文献   

12.
针对含蜡原油长输管道管内外情况均十分复杂的特点,详细研究了含特殊管段的含蜡原油长输管道,利用有限元法对热油管道处于不同工况下的热力模型进行了求解,并在计算过程中对特殊管段进行了巧妙的处理,最后通过算例详细分析了特殊管段对处于不同工况的原油管道热力特性的影响。结果表明,结蜡层的存在会使处于正常运行管道中的原油散热能力减弱,但却会使停输管道内的原油温降速率增大;而管道沿线浸水段的存在,不仅会使管道正常运行中末端油温偏低,还可能使管道在停输中中间浸水段的油温远远低于末端温度,严重影响对停输管道顺利再启动的判断。  相似文献   

13.
为了获得高效石油降解菌种,以原油为唯一碳源,从油水混合物中分离筛选出菌株。研究不同的温度、转速等对菌体生长情况和石油降解率的影响。在实验条件下,2株优势菌在适宜的条件下对石油的降黏率可分别高达28.5%、51.5%。偏酸或偏碱环境均不利于菌体生长,培养温度对2株菌体生长和石油降解率影响较大,最佳温度是35℃。在高矿化度条件下,菌株对原油仍有降解作用,降黏率为40%以上。原油组分分析结果表明,菌种在以原油为碳源培养后,使原油组分中沥青质、非烃及芳烃类含量均发生变化。  相似文献   

14.
为解决大批量进口委内瑞拉稠油到岸后无法利用管道进行常温输送的难题,对油品黏度的快速预测、掺稀油品均一性和稳定性评价以及不同输送工况下安全掺稀比例确定等关键问题开展了研究,建立了一套以室内掺混实验为基础,以模拟计算为辅助手段的稠油常温掺稀输送工艺分析方法。在对16种进口轻质原油基本物性进行统计分析的基础上,开展了委内瑞拉稠油与3种典型进口轻质原油的室内掺混测试实验,建立了不同掺稀比例下混油黏度速查表,利用该表仅需知道20 ℃下稀油黏度,就可快速确定不同掺稀比例及温度下的混油黏度;通过静置实验,对掺稀后混油的稳定性和均一性进行了评价,测试表明掺稀油品经过10 d的静置仍具有很好的均一性。以日东管道为例,对不同季节掺稀输送方案进行了计算对比分析,提出了确定安全掺稀比例的方法。相关研究成果可为稠油常温掺稀输送管道的安全运行提供支持。  相似文献   

15.
裸露管线温降规律研究   总被引:2,自引:0,他引:2  
裸露原油管线停输后,由于管道中油的热容量要比周围土壤的热容量小得多,所以冷却速度要比埋地管道快得多,成为限制允许停输时间的关键。根据裸露热油管道的热力及水力特征,建立了管道停输后的温降数学模型。将模型简化后采用有限差分方法,把热传导偏微分方程转化为线性方程组后,用迭代法求解。编制了停输温降温度场的程序框图,以实际管道为例计算出不同停输时间管道内的温度分布值。将管线停输后管中心、1/2半径及管壁处温度进行比较,制定出可行的管线间歇输送方案。  相似文献   

16.
埋地热油管道停输轴向温降规律研究   总被引:6,自引:0,他引:6  
热油管道的计划检修和事故抢修都在管线停输情况下进行,停输后,管内存油油温不断下降,存油粘度随油温下降而增大,当粘度增大到一定值后,会给管道输送再启动带来极大的困难,甚至会造成凝管事故.为了确保安全经济地输油,必须研究管路停输后的温降情况,以便确定允许停输时间.根据热油管道停输后油品和管道周围土壤的热力变化工况,提出了传热定解问题并对其进行数学求解,得出了管道中油品轴向温度随时间和距离变化的解析解,并编制了相应的软件,从而为更合理地确定在不同季节安全停输时间提供了科学计算依据.  相似文献   

17.
埋地热油管道停输径向温降规律研究   总被引:7,自引:1,他引:6  
热油管道的计划检修和事故抢修是在管线停输情况下进行的.停输后,管内存油油温不断下降,存油粘度随油温下降而增大,当增大到一定值后,会给管道再启动带来极大的困难,甚至会造成凝管事故.热油管道不仅存在轴向温降,而且还存在径向温降.为了确保安全经济地输油,在得出停输后轴向温降规律的基础上,还必须研究管路停输后的径向温降情况,以便更准确地确定允许停输时间.根据热油管道停输后油品轴向温降公式和径向传热规律,提出了传热定解问题并对其进行数学求解,得出了管道中油品径向温度的解析解,并编制了相应的软件,从而为更合理地确定在不同季节安全停输时间提供了科学计算依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号