首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 305 毫秒
1.
以峰峰万年矿的地质采矿条件为原型,利用FLAC3D数值模拟软件,建立了深部大采宽条带开采数值模拟模型,对开采厚度与下沉系数的关系进行了研究.结果表明:在采深和采出率等条件相同的情况下,地表下沉值和水平移动值均随采厚的增加而增大,而下沉系数随采厚的增加以非线性关系逐渐减少.下沉系数与开采厚度关系的确立,对深部大采宽条带开采地表移动变形预计及优化设计具有指导作用.  相似文献   

2.
为研究煤矿工业广场密集建筑物下压煤开采技术,以平煤七矿开采为例,依据实际采煤条件及条带开采理论,通过理论计算,确定变采(留)宽条带小工作面开采方案,通过概率积分法预计、数值模拟,研究了条带小工作面重复采动的地表下沉盆地的移动变形规律,得出地表移动和变形值及其对地表建(构)筑物的影响情况。结果表明,变采(留)宽条带小工作面开采后,采出率为65.5%,地表最大下沉值为429.3 mm,下沉系数为0.133,地表主要建筑物损害程度在Ι级之内,采空区中心向下山方向偏移距离d为26 m,最大下沉角为85.6°。条带小工作面开采能够在提高回采率的基础上很好地控制覆岩变形与地表沉陷,解决了保护地表建筑物与解放工业广场煤柱的矛盾,为资源枯竭煤矿工业广场煤柱回收在技术和理论上提供了参考。  相似文献   

3.
大采深条带开采宽度确定方法研究   总被引:1,自引:0,他引:1  
在建筑物下开采深部压煤通常采用条带开采法控制地表移动变形量,条带开采工作面倾斜方向容易形成极不充分工作面,结合某煤矿建筑物下深部压煤条带开采试验,深入研究和探索深部条带开采采宽和留宽确定方法及其协调关系,并与下沉系数法、压力拱计算值法相比较,得出该煤矿条带开采的参数,试验结果表明,极不充分开采法确定开采宽度对于条带开采设计是十分有效的,能有效地控制地表移动和变形程度.本方法对于指导相似地质条件下开采建筑物下压滞的大量煤炭具有较大的实用价值和指导意义.  相似文献   

4.
厚表土层薄基岩条件下村庄压煤条带开采试验   总被引:1,自引:0,他引:1  
为了确定临涣煤矿厚表土层薄基岩下合理的村庄压煤条带开采方案,采用离散元数值模拟方法研究厚表土层薄基岩下条带开采地表沉陷特征.结果表明:当临涣煤矿四采区的薄基岩厚度小于条带采宽所引起的垂直应力增高区域高度时,地表沉陷将急剧增加;并得出了四采区条带采宽与垂直应力增高区域高度的线性增加关系.鉴于此优化了临涣煤矿村庄压煤条带开采方案,经过两个条带工作面的成功试采,已安全采出煤炭约11万t,地面移动变形最大值均小于建筑物Ⅰ级损坏临界值,建筑物未采取任何加固措施保护完好,留设煤柱能够保持长期稳定,取得了显著的经济效益.  相似文献   

5.
在处理倾斜煤层的开采沉陷数据时,往往采用平均采深代替走向主断面实际开采深度,此时存在着采深偏移系数的情况,不可避免地造成了开采沉陷预测的不准确性.为了提高开采沉陷预测精度,通过理论推导,给出了采深偏移系数计算公式,分析了上覆岩层岩性、煤层倾角、松散层厚度等地质采矿条件对采深偏移系数的影响.同时,结合11个矿区的开采工作面资料,求取了以平均采深代替走向主断面实际采深时各地表移动变形值的偏差.结果表明,采深偏移系数随着覆岩强度和煤层倾角的增加而增加,随基深比的减小而减小.当煤层倾角达到20°以上时,应该考虑采深偏移系数对各移动变形值造成的影响,为矿山开采沉陷准确预测提供参考.  相似文献   

6.
多煤层开采时条带空间位置对岩层移动的影响   总被引:4,自引:0,他引:4  
本文在采用弹塑性有限单元法模拟的基础上,得到了多煤层条带空间位置与岩层及地表移动间的关系。给出了下沉系数q、水平移动系数b,主要影响范围角正切tgβ与上、下煤层条带间水平错距l、层间距h、累计采厚m的计算公式。根据这些计算公式计算的结果与实测相比符合较好。  相似文献   

7.
为了研究急倾斜多煤层开采条件下地表及围岩移动变形特点,以木城涧煤矿大台井急倾斜多煤层开采为研究对象,进行了相似材料模拟研究.揭示了地表移动变形规律和围岩垮落、破坏机理,得出了不同区域移动变形的大小及主要特点,并与实地观测数据进行了对比分析.结果表明:该条件下开采,地表沉陷盆地可分为露头塌陷区、整体沉陷区、渐变沉陷区和轻微沉陷区,浅部开采形成的地表分区格局对整个采动影响区的地表移动变形起到了控制作用,浅部开采覆岩破坏以陷落和张裂为主要特征,深部开采以离层带裂隙顺层通达地表和台阶错落下沉为主要特征.  相似文献   

8.
深部开采条件下地表沉陷预测及控制探讨   总被引:19,自引:0,他引:19  
基于实测资料建立了极不充分开采条件下概率积分法预测参数计算表达式和深部开采时下沉系数计算式,为深部开采地表移动预测提供了计算方法;基于极不充分开采的定义,给出了深部开采大采宽带的设计及控制地表沉陷的设计。  相似文献   

9.
以常村煤矿工程地质资料和地表移动观测站资料为依据,详细分析了2113工作面地表终态下沉、动态下沉和终态水平移动的特征,从机理上研究了大采深巨厚砾岩开采条件下地表形变异常的原因.通过走向方向最大下沉点下沉速度的变化规律和工程实测资料,得出了地表形变与井下冲击地压的关系,确定了地表移动与变形的角量参数.结果表明,受关键层的控制,在整个观测过程中,地表始终处于缓慢下沉状态,且在沉降过程中不存在下沉突变点;下沉速度的反弹可以作为冲击地压危险的预报信息,巨厚砾岩层的运动是发生矿震的主要力源之一.  相似文献   

10.
条带开采沉陷预计误差的实测纠偏方法   总被引:1,自引:0,他引:1  
根据近水平煤层条带开采覆岩移动变形机制和下沉盆地的对称性,提出了近水平煤层条带开采沉陷预计误差的实测纠偏方法,编制了条带开采沉陷预计误差实测纠偏方法的计算机软件.利用前岭煤矿条带开采的地表下沉实测数据验证了该方法的可靠性,基于415工作面和413工作面采后的下沉曲线,应用实测纠偏方法预计的411工作面采后下沉曲线与实测曲线的误差小于±16mm.  相似文献   

11.
Mining subsidence damage is the main factor of restricting coal mining under buildings. To control or ease effectively the degree of mining subsidence and deformation is essential to resolve this problem. Through analyzing both advantages and disadvantages of some technologies such as mining with stowing, partial extraction and grouting in separated beds of overburden, we used the principle of load replacement and propose a “3-step mining” method, a new pattern of controlling mining subsidence, which consists of: strip mining, i.e. grouting to fill and consolidate the caving zone and retained strip pillar mining. The mechanism of controlling mining subsidence by using the “3-step mining” pattern is analyzed. The effect of the control is numerically simulated. The preliminary analysis shows that the “3-step mining” can effectively control ground subsidence and deformation. By using this method, the ground subsidence factor can be controlled to a value of about 0.25. Coal recovery can reach 80%-90%. Coal mining without removing surface buildins can be realized and the economic loss resultin from round subsidence can be greatly reduced.  相似文献   

12.
The objective of this paper is to study the behavior of a low thick and low depth coal seam and the overburden rock mass. The mining method is room and pillar in retreat and partial pillar recovery. The excavation method is conventional drill and blast because of the small production. The partial pillar recovery is about 30% of the previous pillar size, 7 m × 7 m. The roof displacement was monitored during retreat operation; the surface movement was also monitored. The effect of the blasting vibration on the final pillar strength had been considered. Due to blasting, the pillar reduced about 20%. The consequence is more pillar deformation and roof vertical displacement. The pillar retreat and ground movement were simulated in a three-dimensional numerical model. This model was created to predict the surface subsidence and compare to the subsidence measured. This study showed that the remaining pillar and low seam reduce the subsidence that was predicted with conventional methods.  相似文献   

13.
在材料力学简支梁理论基础上,建立了多煤层条带开采上下条带的煤柱完全不对齐时煤层间岩体的力学模型,分析并计算了各种地质和采矿因素(如采深、层间距、采出率等)对多煤层层间岩体稳定性的影响,研究了层间岩体应力的变化规律,并得出了层间距及下煤层采宽对保持煤层间岩体的稳定性有着重要作用的结论.最后结合峰峰矿区开采实例,预计了一定采深下,合理的下煤层采宽.  相似文献   

14.
煤矿开采沉陷有效控制的新途径   总被引:31,自引:0,他引:31  
开采沉陷是造成矿区环境地质灾害的直接根源,有效控制和减轻地面沉陷程度是减轻或避免开采沉陷环境灾害的根本之路,针对这一问题,分析了充填开采、条带开采和覆岩离层注浆岩层控制技术的优缺点,根据荷载置换原理,提出了“条带开采一注浆充填固结采空区—剩余条带开采”的三步法(二次条带式)开采沉陷控制的新思路,进行了三步法开采沉陷控制的可行性研究,初步分析表明,采用三步法开采可以实现对岩层移动和地表沉陷的有效控制,地表下沉系数可控制在0.25左右,煤炭采出率可达到80%~90%,可基本实现地面建筑物不搬迁和大幅度减轻土地塌陷灾害。  相似文献   

15.
For improving global stability of mining environment reconstructing structure, the stress field evolution law of the structure with the filling height change of low-grade backfill was studied by ADINA finite element analysis code. Three kinds of filling schemes were designed and calculated, in which the filling heights were 2, 4, and 7 m, separately. The results show that there are some rules in the stress field with the increase of the filling height as follows: (1) the maximum value of tension stress of the roof decreases gradually, and stress conditions are improved gradually; (2) the tension stress status in the vertical pillar is transformed into the compressive stress status, and the carrying capacity is improved gradually; however, when the filling height is beyond 2.8 m, the carrying capacity of the vertical pillar grows very slowly, so, there is little significance to continue to fill the low-grade backfill; (3) the bottom pillar suffers the squeezing action from the vertical pillars at first and then the gravity action of the low-grade backfill, and the maximum value of tension stress of the bottom pillar firstly increases and then decreases. Considering the economic factor, security and other factors, the low-grade backfill has the most reasonable height (2.8 m) in the scope of all filling height.  相似文献   

16.
Many states rely upon the Pennsylvania 1957 Gas Well Pillar Study to evaluate the coal barrier surrounding gas wells. The study included 77 gas well failure cases that occurred in the Pittsburgh and Freeport coal seams over a 25-year span. At the time, coal was mined using the room-and-pillar mining method with full or partial pillar recovery, and square or rectangle pillars surrounding the gas wells were left to protect the wells. The study provided guidelines for pillar sizes under different overburden depths up to213 m(700 ft). The 1957 study has also been used to determine gas well pillar sizes in longwall mines since longwall mining began in the 1970 s. The original study was developed for room-and-pillar mining and could be applied to gas wells in longwall chain pillars under shallow cover. However, under deep cover, severe deformations in gas wells have occurred in longwall chain pillars. Presently, with a better understanding of coal pillar mechanics, new insight into subsidence movements induced by retreat mining, and advances in numerical modeling, it has become both critically important and feasible to evaluate the adequacy of the 1957 study for longwall gas well pillars. In this paper, the data from the 1957 study is analyzed from a new perspective by considering various factors, including overburden depth, failure location, failure time, pillar safety factor(SF), and floor pressure. The pillar SF and floor pressure are calculated by considering abutment pressure induced by full pillar recovery. A statistical analysis is performed to find correlations between various factors and helps identify the most significant factors for the stability of gas wells influenced by retreat mining. Through analyzing the data from the 1957 study, the guidelines for gas well pillars in the 1957 study are evaluated for their adequacy for roomand-pillar mining and their applicability to longwall mining. Numerical modeling is used to model the stability of gas wells by quantifying the mining-induced stresses in gas well casings. Results of this study indicate that the guidelines in the 1957 study may be appropriate for pillars protecting conventional gas wells in both room-and-pillar mining and longwall mining under overburden depths up to 213 m(700 ft),but may not be sufficient for protective pillars under deep cover. The current evaluation of the 1957 study provides not only insights about potential gas well failures caused by retreat mining but also implications for what critical considerations should be taken into account to protect gas wells in longwall mining.  相似文献   

17.
开采沉陷预计参数的确定方法   总被引:12,自引:0,他引:12  
基于相似理论的基本原理 ,根据我国 1 2 0多个地表移动观测站的监测数据 ,导出了开采沉陷预计参数与岩体综合变形模量E、采深H和采厚M等因素之间的统计公式 ,即地表下沉系数 q、水平移动系数b、主要影响角正切tanβ和拐点偏移距与采深的比值S0 /H与相似准则E/Em 和 ρH2 ( 1 0 0MEm)之间呈线性关系 .研究表明 :岩体的综合变形模量对开采沉陷预计参数的影响显著 ,采深主要影响拐点偏移距 ,对其它预计参数的影响甚微 ,而采厚对所有预计参数的影响都很小 ,可忽略  相似文献   

18.
This paper attempts to quantify the effect of backfilling on pillar strength in highwall mining using numerical modelling. Calibration against the new empirical strength formula for highwall mining was conducted to obtain the material parameters used in the numerical modelling. With the obtained coal strength parameters, three sets of backfill properties were investigated. The results reveal that the behavior of pillars varies with the type and amount of backfill as well as the pillar width to mining height ratio(w/h). In case of cohesive backfill, generally 75% backfill shows a significant increase in peak strength, and the increase in peak strength is more pronounced for the pillars having lower w/h ratios. In case of noncohesive backfill, the changes in both the peak and residual strengths with up to 92% backfill are negligible while the residual strength constantly increases after reaching the peak strength only when 100%backfill is placed. Based on the modelling results, different backfilling strategies should be considered on a case by case basis depending on the type of backfill available and desired pillar dimension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号