首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
利用商业软件Fluent模拟了烟气在不同流速下流经椭圆H型翅片管的流动和换热过程.利用软件生成了翅片的温度分布云图和烟气的速度云图,比较分析了在不同烟气流速下,翅片的开缝情况对翅片管换热以及阻力特性的影响.结果表明,横开缝的椭圆H型翅片管与纵开缝的相比,其传热效率更高,阻力更小.  相似文献   

2.
为了对不同排列方式的H型翅片管进行数值分析,建立不同布置方式下H型翅片管束流动及换热数值模型,获得两种典型布置下的流动及传热特性变化规律。结果表明,H型翅片特殊沟槽结构使背风侧形成纵向冲刷流场,存在明显的三维流动特征,使得其具有自清理、不易积灰的功能;错排翅片基管传热系数大于等间距排列的基管,并且随速度增大,换热效果差异越明显;管束行距对翅片管传热系数的影响明显大于列距的影响,管束行距增大,引起流道内空气平均速度下降,传热系数降低,流道损失减小。  相似文献   

3.
利用CFD计算方法,对矩形翅片椭圆管换热器进行了数值模拟,并与同周长、同横截面和同迎风面矩形翅片圆管换热器进行了比较.分析研究了矩形翅片椭圆管和圆管的换热和阻力特性,以及速度、温度、压力的内部流场分布特性.结果表明,矩形翅片椭圆管的换热性能优于圆管换热器;矩形翅片椭圆管尾部涡流小,出口速度均匀;与圆管相比,椭圆管矩形翅片在工程应用中可以减少阻力损失,增强换热系数.  相似文献   

4.
齿型螺旋翅片管束传热及通风特性试验研究   总被引:2,自引:0,他引:2  
对一种先进的强化换热元件--齿型螺旋翅片管束进行了传热及通风阻力特性试验研究,试验用直接法进行,得出受洁净气流冲刷时该管束传热特性关联式和通风了阻力特性关联式,并将该种型螺旋翅片管束的性能与相同结构的整体型旋翅片管束进行了比较。  相似文献   

5.
椭圆翅片管对风洞气流湍流特性影响研究   总被引:1,自引:0,他引:1  
针对风洞中应用的某型椭圆翅片管热交换器,开展了换热管束对气流扰动特性仿真研究。首先利用试验结果验证了数值方法的可靠性,然后通过数值仿真着重对比分析了不同来流条件下热交换器下游湍流发展变化特性,并对管排数目和翅片间距对热交换器下游气流扰动和流场分布的影响展开了研究。结果表明:热交换器换热管束对上游不均匀来流有较强的整流作用,可使流动分布趋向均匀;热交换器后气流的湍流强度受来流条件影响不大,主要取决于换热管束本身的结构参数;热交换器后气流湍流强度在入口流体流动方向上很快衰减,该型热交换器在入口下游600 mm处湍流强度即可减小到7.5%,与试验测试值吻合较好。  相似文献   

6.
换热器传热效率的大小与翅片管的排列方式和翅片的结构参数有关。运用电脑软件对换热器中环形翅片管束的实物模型进行了仿真模拟,研究了顺排管束和错排管束的换热效果,并通过固定参数法对加热器模型进行理论计算。研究结果表明,错排管束的换热效果优于顺排管束,加热器翅片的最优间距为5.5 mm,与无翅片的换热器管道相比,有翅片的换热器管道的传热效率提高了387.35%。  相似文献   

7.
顺排翅片管束传热和阻力特性的实验研究   总被引:1,自引:0,他引:1  
在一低速风洞中,对顺排翅片管束的管外换热系数和阻力降进行了实验研究。采用热管作为加热元件,而不采用传统的蒸汽锅炉,使实验设备简单并具有充分的可折换性,得到了顺排管束的实验关联式,并与叉排翅片管束的实验数据进行了比较。发现,顺排管束的换热系数约为叉排管束的(80—90)%;顺排管束的阻力降比叉排管束有明显的降低,前者约为后者的一半左右。这说明,在阻力降要求特别低的场合,采用顺排排列的翅片管束是有吸引力的。  相似文献   

8.
采用Fluent软件,对基管相同的圆翅片管和5种椭圆翅片管用稳态RNGκ-ε模型进行三维数值模拟,5种椭圆翅片管A_(fin),A_(min),D_e,P_(er),β分别与圆翅片(C_(ir))有相同的翅片面积、最小截面面积、翅片当量直径、翅片周长和翅化比.通过对不同雷诺数(Re)下流场及翅片表面局部努塞尔数(Nu)的分析比较,得到翅片管通道内流体流动及换热的特征,并提供了圆翅片管和5种椭圆翅片管的综合换热性能Nu/f的结果.研究表明,圆翅片C_(ir)的Nu大于椭圆翅片A_(fin),D_e,P_(er),β,但小于椭圆翅片A_(min).圆翅片的阻力系数f大于椭圆翅片A_(fin),P_(er),β的f,且小于椭圆翅片A_(min)的f.椭圆翅片D_e在Re较小(Re≤8 000)时与圆翅片C_(ir)的f的差值较小,在Re较大(Re8 000)时与圆翅片C_(ir)基本相同.椭圆翅片A_(min)的综合换热效果最好.  相似文献   

9.
介绍了螺旋翅片管束灰污通风阻力试验研究的原理、试验系统和所采用的试验研究方法;将典型齿型和整体型螺旋翅片管束试验得出的灰阻力特性与实炉试验阻力特性以及洁净管束阻力特性相比较;得出适用于这两种灰污螺旋翅片管束通风阻力的计算方法。所得计算公式可直接应用于工程实际。  相似文献   

10.
针对位于集约型AHU内部的椭圆管翅片换热器,在合理简化模型的基础上,运用CFD方法对其进行数值模拟,并与同当量直径的圆管翅片换热器进行比较。研究分析了两种结构换热器综合性能的差异、空气侧速度与温度场的分布特征。结果表明:椭圆管换热器出口平均温度高,尾部的涡流与高温区域小,综合换热性能优于圆管,运用在AHU中能够减少阻力损失并增强换热,进而提高空调系统的整体效率。探讨了翅片间距、翅片厚度及管间距3种结构参数对椭圆管翅片换热器性能的影响,为椭圆管在AHU内的运用及优化设计提供参考。  相似文献   

11.
转炉煤气回收系统文氏管喷淋降温与流动数值模拟   总被引:1,自引:1,他引:1  
在转炉煤气回收系统中,文氏管内部有喷射行为的传热传质非常复杂。获得其内部的传热传质情况对文氏管的设计和运行管理具有非常重要的指导意义。视炉气为连续相、喷射液滴为离散相,考虑连续相与离散相在质量、动量和能量的相互作用,建立了数学模型,数值模拟了文氏管内部流动与传热行为,获得了文氏管出口温度、水蒸气质量分数和压力损失与喷射流量之间的关系。当喷射流量小于临界喷射流量时,出口炉气的温度和水蒸气质量分数随喷射流量的增大分别呈线性下降和上升关系;当喷射流量大于临界喷射流量时,炉气降温和水蒸气质量分数增长不显著。压力损失随喷射流量增大而增大。  相似文献   

12.
为研究低压省煤器H型鳍片管的传热特性及阻力特性,采用realizable湍流模型数值研究H型鳍片管管束外烟气的流动传热特性。研究结果表明:H型鳍片管具有均匀气流的作用,在管壁面形成的漩涡能够加强通道内绕流作用,利于强化传热;当烟气的流速越高,H型鳍片管传热系数越大,流动阻力逐渐增大;当鳍片节距增加,H型鳍片管传热系数增加,流动阻力逐渐降低;在节距为18 mm时,鳍片管传热系数较高,流动阻力最小,选用18 mm的鳍片节距最为经济。  相似文献   

13.
波纹管传热与污垢特性的实验研究   总被引:1,自引:1,他引:1  
采用对比的实验方法对波纹管和光管的流动、换热和污垢特性进行了研究。实验结果表明:对于相同公称直径的波纹管和光管,在相同流量时,波纹管的流动阻力系数和压降比光管大,但波纹管具有结垢速度慢、诱导期长、污垢热阻渐近值小的优点,而且波纹管在结垢前后都有良好的强化传热性能。  相似文献   

14.
相比于常规混凝土结构,水下混凝土结构开裂对结构安全具有更加恶劣的影响,准确、及时地监测裂缝的发生发展过程,对保障涉水工程安全、防止事故具有重要意义。本文基于流体-热源-裂缝的热效应耦合作用,提出水下混凝土结构裂缝监测的温度示踪法,并设计3种裂缝监测方案,分别采用监测管-多孔套管组件、监测管-空心套管组件和监测管-灌水管组件实现开裂信息与开裂部位热力学信息的转换。其中:前两种监测方案主要利用热传导原理,使开裂后裂缝周围介质的热力学参数发生改变,从而改变热量传递规律;第3种方案主要利用对流传热原理,通过灌水使裂缝截面产生对流传热效应,从而提高传热速度。针对上述3种监测方案,分别制作了混凝土梁试件,采用光纤光栅温度传感器和陶瓷加热管组成的传感加热单元开展了瞬态传热模型试验,根据热源降温曲线的分段特征,定义了反映热源降温速度的判别指标,利用该指标进行裂缝的识别,并对3种方案的裂缝识别效果进行分析和对比。结果表明:3种监测方案均能很好地判断是否有裂缝产生;在裂缝定位方面,方案3效果更好;在裂缝宽度定量识别方面,方案1无法识别裂缝宽度,方案2仅可在流动水环境中识别裂缝宽度,方案3可根据渗漏流量识别裂缝宽度。  相似文献   

15.
针对金属氢化物反应器传热性能较差的问题,提出了更紧凑高效的双螺旋结构换热管。建立了内置螺旋管的金属氢化物反应器的三维数学模型,研究了换热流体入口平均流速对反应器传热性能的影响,确定了模拟中入口平均流速的范围,对比分析了单、双螺旋结构对反应器性能的影响。结果表明:在换热流体入口平均流速大于0.5m/s以后,能达到较好的换热效果,换热流体的平均真实温升趋于稳定。减小螺旋导程可以明显提高换热流体的平均真实温升和反应器的传热性能。对于导程为60mm的单、双螺旋结构管,床层平均温度降至300K所用时间从7000s缩短到3000s。导程为30mm的双螺旋结构管的单位重量输出?功率比导程为15mm的单螺旋结构管更高,可见内置双螺旋结构管反应器的传热性能优于内置单螺旋结构管反应器。双螺旋结构管具有更大的换热面积,在反应器床层内的位置分布更加均匀,从而提高了反应器的传热性能。  相似文献   

16.
对两端开口的,间距为b=0.015m~0.04m,高度L=0.3~6.0m的竖直平行板通道的自然对流换热进行了计算研究,计算的R_a(D_h/L)值为110~270000,采用数值解的方法,解出质量、动量、能量微分方程,从而求得通道内的速度场、温度场、质量流率,并进一步研究了对流、辐射换热量及总传热系数,研究表明,在一定范围内,通道内自然对流的R_a(D_h/L)数的增大,对于其流速及温度分布有明显影响,在其他条件相同时,增大通道宽度b对于表征其总传热损失的总传热系数亦有所影响。  相似文献   

17.
In this study, exergy efficiency is defined to evaluate convective heat transfer in a tube based on the local exergy destruction rate from the equilibrium equation of available potential. By calculating this destruction rate, the local irreversibility of convective heat transfer can be evaluated quantitatively. The exergy efficiency and distribution of local exergy destruction rate for a smooth tube, an enhanced tube into which short-width twisted tape has been inserted, and an optimized tube with exergy destruction minimization are analyzed by solving the governing equations through a finite volume method(FVM). For the smooth tube, the exergy efficiency increases with increasing Reynolds number(Re) and decreases as the heat flux increases, whereas the Nusselt number(Nu) remains constant. For the enhanced tube, the exergy efficiency increases with increasing Reynolds number and increases as the short-width rate(w) increases. An analysis of the distribution of the local exergy destruction rate for a smooth tube shows that exergy destruction in the annular region between the core flow and tube wall is the highest. Furthermore, the exergy destruction for the enhanced and optimized tubes is reduced compared with that of the smooth tube. When the Reynolds number varies from 500 to 1750, the exergy efficiencies for the smooth, enhanced, and optimized tubes are in the ranges 0.367–0.485, 0.705–0.857, and 0.885–0.906, respectively. The results show that exergy efficiency is an effective evaluation criterion for convective heat transfer and the distribution of the local exergy destruction rate reveals the distribution of local irreversible loss. Disturbance in the core flow can reduce exergy destruction, and improve the exergy efficiency as well as heat transfer rate. Besides, optimization with exergy destruction minimization can provide effective guidance to improve the technology of heat transfer enhancement.  相似文献   

18.
生物质燃料燃烧后所产生的烟气中含有大量的水蒸气, 在锅炉尾部添加冷凝换热器回收冷凝热可以有效提高系统热效率。选用的生物质燃料烟气中水蒸气的体积分数为27.9%, 基于Mixture模型并选用Lee模型作为冷凝传质模型对尾部烟气凝结的传热传质特性进行了数值模拟研究。假设流动为稳态, 湍流模型采用标准kε模型, 求解选用Simple算法, 研究了烟气侧不同入口流速下(1~4 m/s)温度场、流场及液态水体积分数的变化规律, 对翅片管换热器的表面传热系数及换热量进行了对比分析。计算结果表明, 随着入口流速的增加, 烟气出口温度逐渐升高, 壁面凝结速率不断增大, 而冷凝水量逐渐减少, 同时翅片管换热器的表面传热系数及换热量逐渐增加。  相似文献   

19.
针对内置弹簧换热管在强化传热过程中产生较大阻力的问题,提出了一种插入分段式弹簧的方法,并通过Fluent软件对内置不同长度的弹簧换热管某一截面处的流动特性进行数值模拟,分别取每段弹簧的长度分别为50 mm、100 mm、150 mm、200 mm,得到了在内置不同长度弹簧的换热管内某一截面处的速度场;然后分别取不同丝径和圈径的分段式弹簧,对换热管内某一截面的流体径向速度场进行数值模拟,研究弹簧的丝径与圈径对强化传热的影响.结果表明:在换热管两端插入分段式弹簧使得管内流体径向速度提高了2~3倍,加快了管内壁区域流体的流动,使得边界层变薄,不仅加强了边界层流体的扰动,而且一定程度上降低了流体流动的阻力,从而提高了换热效率.在雷诺数相同时,内置分段式弹簧换热管相对于光管Nu数提高了2~4倍;随着丝径和圈径的增大,强化传热效率得到提高而流动阻力随着相应增加.  相似文献   

20.
以三元熔盐为传热介质,在熔盐吸热传热实验平台上进行高温高热流密度下316L不锈钢熔盐吸热管传热特性试验。吸热管外径为20 mm,实验流体温度控制在250~500℃,热流密度为180~470 kW/m2。实验揭示了不同温度及不同热流密度下熔盐吸热管内对流换热的Nu-Re关系,Nu随Re增加显著增大,实验Nu数普遍高于按Sieder-Tate关联式计算的值。分析了温度及热流密度对熔盐吸热管传热特性的影响,发现熔盐平均温度相同时,低热流密度下的Nu数大于高热流密度下的Nu数,同时实验结果显示高温高热流密度下熔盐吸热管的传热性能主要取决于熔盐流速,且高热流密度对传热过程中的温度影响非常显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号