首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
为强化低碳源污水的脱氮除磷效能,采用序批式膜生物反应器(SMBR),通过交替曝气的运行方式,构建了厌氧-交替好氧缺氧-序批式膜生物反应器(A-(O/A)n-SMBR)反硝化除磷系统,考察了系统在不同溶解氧(DO)含量下污染物去除效能及聚磷菌的构成特征.结果表明:当DO的质量浓度由2.0~2.5mg/L变化至0.5~0.8mg/L的过程中,系统对氨氮(NH3-N)和有机物(COD)的去除率均可达到90%以上,出水COD和NH3-N的质量浓度分别小于25mg/L和1mg/L;当DO含量较低(0.5~0.8mg/L)时,系统对总磷(TP)的去除率高于对总氮(TN)的去除率,而DO含量较高(2.0~2.5mg/L)时则相反;而DO的质量浓度控制在1.0~1.2mg/L时,TP和TN的去除率可分别到达85%~90%和80%~85%.DO含量对交替好氧/缺氧运行的SMBR系统中聚磷菌构成影响较大,当DO的质量浓度由2.0~2.5mg/L降至0.5~0.8mg/L时,反硝化除磷菌(DPAOs)的比例由40.30%提高至75.10%,而好氧除磷菌(PO)比例则从59.70%降低为24.90%.  相似文献   

2.
曝气强度是调控间歇曝气DO的重要参数,为明晰总曝气强度相同、曝气强度不同对间歇曝气SBR亚硝化工艺的影响,在25~28 ℃下,接种亚硝化性能良好的活性污泥于间歇曝气SBR反应器中,结合响应面分析研究间歇曝气下曝气强度对亚硝化系统稳定性的影响.结果表明,控制曝气强度为1.2 L/(h·L),亚硝态氮积累率可达93%,但氨氮去除率仅为80%.增加曝气强度到1.58 L/(h·L),随着运行周期增加,亚硝化性能逐渐恶化.控制曝气强度为1.93 L/(h·L),系统的平均氨氧化率和亚硝酸盐积累率为90%和91.6%,实现了较高的氨氧去除和亚硝酸盐积累.批次实验及响应面分析表明,曝气强度及曝气时长对氨氮去除及亚硝酸盐的积累均有显著影响,曝气时间越短亚硝酸盐积累率越高,曝气强度越大氨氮去除率越高.但低曝气强度下AOB的活性受到抑制,通过延长曝气时长并不能保持良好的氨氮去除.在过高曝气强度下,AOB的活性不能得到相应的增强,氨氮去除率及亚硝酸盐积累率只受曝气时长的影响,因此,在总曝气强度相同下,可采取较高的曝气强度配合短曝气时长来实现高氨氮去除及亚硝酸盐积累.  相似文献   

3.
利用序批式活性污泥反应器(sequencing batch reactor,SBR)研究了NaCl盐度、水力停留时间(hydraulic retention time,HRT)和进水负荷对短程硝化反硝化的影响.结果表明,在pH、温度和溶解氧(dissolved oxygen,DO)质量浓度分别为7.5~8.5、30~35℃和0.5~1 mg/L的条件下,当NaCl盐度、进水化学需氧量(chemical oxygen demand,COD)和氨氮质量浓度分别为5.8~25.0 g/L、450~550 mg/L和35~45 mg/L时,NO2--N累积率大于50%.在NaCl盐度14.5 g/L的条件下,当HRT为6.21 h,进水中每天1 kg悬浮物中所含的CDD和氨氮量分别为5.03×10-2和2.24×10-3kg时,亚硝酸盐累积率高于99%.高盐环境下控制HRT、有机负荷与氨氮负荷可实现短程硝化反硝化,实现短程硝化的耐盐极限为25 g/L.  相似文献   

4.
目的 通过A/O反应器处理猪场厌氧发酵液试验,研究A/O反应器联合驯化过程中营养物质的去除规律.方法 A/O工艺对猪场厌氧发酵液启动完成后,改变系统运行参数,包括:溶解氧(DO)、水力停留时间(HRT)和内循环回流比(r)等,研究系统处理效率.结果 采用了先独立后联合的启动方式,在历时50 d后,A/O反应器顺利启动,出水COD、NH3-N去除率均稳定的保持在90%左右,TN去除率最高可到60%左右.当DO由2 mg/L提高到3 mg/L时,COD和氨氮的去除效果均有所提高,其中氨氮去除效果尤为明显,好氧区内的DO质量浓度最佳为3 mg/L.控制溶解氧含量为3.0 mg/L,当好氧区的HRT由12 h降低为10 h时,COD和氨氮的平均去除率均有所下降,因此好氧区的最佳水力停留时间应维持在10~12 h.结论 在不同的硝化液回流比下,A/O膜生物反应器对COD去除效果变化不大,而对总氮去除影响较大,得出此次试验硝化液的最佳回流比为3.0.  相似文献   

5.
目的研究中试条件下固化硝化菌对氨氮、亚硝酸盐氮、CODMn和浊度的去除效果,为实际工程提供参考.方法利用固化技术解决陶粒生物滤池等生物处理无法克服的菌体流失,采用包埋硝化菌固化技术,利用曝气流化床对微污染水进行处理.结果在水温为18~23℃,DO的质量浓度为4 mg/L左右的条件下,当进水的NH4 -N的质量浓度平均值为2.06 mg/L、HRT为50 min,且在系统稳定运行后可将氨氮的质量浓度降至0.5 mg/L以下,亚硝酸盐氮的质量浓度可由0.16 mg/L以上降至0.1 mg/L以下,提高了硝化细菌抗冲击负荷能力.但是对CODMn和浊度没有明显去除作用.结论包埋菌固化技术应用在微污染水处理方面具有较大潜力,若提高反应器内菌体投加量,将十分适合水厂使用.  相似文献   

6.
采用UASB—DAT-IAT联合工艺对某豆制品集团工业废水进行同步硝化反硝化处理,在间歇曝气操作模式,考查该工艺的脱氮效果;研究DO浓度对脱氮及有机物去除效果的影响.结果表明间歇曝气运行并且DO浓度为0.5mg/L时,平均总氮去除率高达80%.  相似文献   

7.
研究采用序批式生物反应器(SBR)处理模拟含盐废水,在乙醇作为碳源的条件下,当DO为2-3 mg/L、温度为35±1℃、pH为7.5-8.5时,考察Na2SO4盐度对SBR工艺脱氮效果的影响。结果表明:SBR反应器经过30 d的驯化,活性污泥氨氮去除率高于90%;在其基础上,SBR反应器中添加Na2SO4,当Na2SO4盐度增加到12 g/L时,污泥系统的氨氮去除率降低至80%,亚硝态氮积累率达到90%。在一定盐度下可实现亚硝酸盐的积累,完成短程硝化反硝化。  相似文献   

8.
试验采用以新型聚乙烯塑料为序批式移动床生物膜反应器研究了其对于高氨氮废水的处理能力.结果表明,填料的填充高度与MBBR有效高度的比例约为80%时较容易实现挂膜,填料的最佳长度为4mm左右;pH在8.0~8.5之间时,系统氨氧化速率较大,最大达到53.97mg/(L·h);MBBR氨氮去除容积负荷、去除率随着进水氨氮容积的升高而先增大后降低,氨氮容积负荷为1.5kgN/(m3·d)时,其去除容积负荷最大,达到1.03kgN/(m3·d),氨氮容积负荷为0.75kgN/(m3·d)时,去除率最大,达到99.6%以上;试验中出现稳定的亚硝酸盐积累,当进水氨氮浓度为200mg/L时,氨氮去除率达到97.7%以上,亚硝酸盐氮约占氨氮去除总量的96.2%.  相似文献   

9.
复合生物反应器亚硝酸型同步硝化反硝化   总被引:2,自引:1,他引:1  
以实际生活污水为对象,利用有效容积为12L的间歇式复合生物反应器(填料体积填充比为30%),通过控制ρ(DO)稳定实现了亚硝酸型同步硝化反硝化脱氮.试验结果表明,在同步硝化反硝化条件下,随着ρ(DO)的升高,亚硝化率逐渐降低,总氮去除率也呈下降趋势.曝气结束,ρ(DO)>4 mg/L时,系统的亚硝化率和总氮去除率均小于50%;当ρ(DO)为2 mg/L,温度维持在(28±1)℃,硝化过程中亚硝化率始终维持在85%以上,ρ(NH_4~+ -N)去除率大于98%,总氮去除率在75%左右.因此,在试验条件下,只要控制曝气量,使得曝气结束时反应器内ρ(DO)为2 mg/L,就可实现稳定的亚硝酸型同步硝化反硝化生物脱氮.  相似文献   

10.
晚期垃圾渗滤液实现短程硝化影响因素分析   总被引:6,自引:1,他引:6  
利用SBR反应器,探讨了溶解氧(DO)、温度和pH值对晚期垃圾渗滤液实现短程硝化的影响.结果表明:DO质量浓度为0.75 mg/L左右时,短程硝化效率较高,大于该值时硝化类型有向全程硝化转变的趋势,低于该值时最大氨氧化速率下降较大;当DO质量浓度保持在0.75 mg/L左右时,降低温度和pH值,最大氨氧化速率下降,但亚硝氮积累率仍保持在较高水平.低溶解氧情况下,由于DO的抑制作用,硝酸菌没有表现出较亚硝酸菌更适应较低温度或pH值环境的特性,DO是实现晚期垃圾渗滤液短程硝化的控制因素.当DO为0.75 mg/L左右,pH值为6.5~8.0,温度为25~27℃时,可以达到96%以上的氨氮去除率及98%以上的亚硝氮积累率,在此条件下最大氨氧化速率为0.097~0.12 g/(gVss.d).  相似文献   

11.
DO对SBR短程硝化系统的短期和长期影响   总被引:2,自引:0,他引:2  
采用实际的生活污水,在SBR反应器内分别考察了溶解氧(DO)对短程硝化效果及污泥种群结构的短期和长期影响.结果表明,通过采用实时控制曝气时间,高ρDO(ρ(DO)=(3±0.5)mg/L)与低ρDO(ρ(DO)=(0.5±0.1)mg/L)条件下SBR系统的亚硝酸盐积累率均能达到90%以上,而低ρDO相对于高ρDO更利于提高系统的同步硝化反硝化(SND)效果,两者的平均同步硝化反硝化率(SND率)分别为45.5%和9.5%,低ρDO下最高SND率达86%.FISH的检测结果表明,实时控制模式下反应器内亚硝酸氧化菌(NOB)逐渐被淘洗,而氨氧化细菌(AOB)变为优势硝化菌群.在高ρDO运行末期,稳定的短程污泥中AOB和NOB的相对数量分别为8%~10%和不足0.5%;在低ρDO运行末期,AOB数量出现了微弱上升,增至10%~12%,而NOB进一步被淘汰,基本检测不出.可见,采用好氧曝气时间实时控制,能对短程硝化系统内污泥种群起到优化作用,且在高、低ρDO下均能实现稳定的短程硝化效果,而低ρDO更有利于系统内亚硝酸氧化菌(NOB)的淘洗、短程硝化率的提高以及系统SND效果的加强.  相似文献   

12.
采用SBR工艺以水产品加工废水为研究对象,控制进水游离氨(FA)浓度为4.61 mg/L,研究高游离氨条件下短程硝化反硝化过程,对比试验结果表明:1号反应器只控制进水游离氨浓度,在运行70 d以后,转变为全程硝化,说明单一因素控制短程硝化反硝化并不稳定;2号反应器高进水游离氨条件下,控制DO为1~2 mg/L和进水pH为8.4±0.1,亚硝酸盐积累率稳定在92%以上,现已运行130 d以上,短程硝化反硝化运行稳定,表明通过非单一因素控制可实现短程硝化反硝化稳定运行.  相似文献   

13.
To investigate the shut-cut nitrification characteristics of aerobic granule,an aerobic granular sequencing batch airlift reactor(AG-SBAR) was carried out with mixed carbon sources of sodium acetate and glucose at 10±1 ℃.Results indicated that ammonia oxidizing bacteria was accumulated inside the aerobic granules and the reactor performed stably with shut-cut nitrification for a long term at low temperature.During the stable operation period,the effluent ammonia nitrogen concentration was maintained at 13.6 mg/L without nitrate and nitrite when the COD/N ratio was 20:1.However,the effluent concentration of ammonia nitrogen was below 0.5 mg/L with effluent nitrosation ratio of 96.7% on average when the COD/N ratio was reduced to 15:1 and 10:1.And the effluent phosphorus concentration was less than 0.4 mg/L during the stable period with the sludge retention time of 30 d.The phosphorus removal efficiency was not strongly influenced by the adjustment of COD/N ratio in this experiment.The removal efficiencies for COD,NH4+-N and PO43--P were 91.3%-94.6%,97.9%-99.7% and 97.1%-99.5%,respectively.  相似文献   

14.
在(19±1)℃条件下,采用SBR工艺处理低碳氮比实际生活污水,没有外加有机碳源,通过限氧曝气实现了亚硝酸型同步硝化反硝化生物脱氮(simultaneous nitrification denitrification via nitrite,亚硝酸型SND).试验结果表明,较长污泥龄下(50~66 d),通过控制曝气量使系统溶解氧处于较低水平,好氧末端ρDO2.0 mg/L,平均ρDO≈0.65 mg/L,不仅可在常温条件下实现短程硝化,ρ(NO2--N)/ρ(NOx--N)稳定在95%以上,而且可同时在该好氧硝化系统中获得高效的反硝化效果,稳定运行后,经亚硝酸型SND途径的总氮去除率(ESND)平均为52%,最高可以达到63.1%.试验分析表明,低ρDO水平是实现亚硝酸型SND的关键因素,通过低ρDO影响硝化菌群的构成、反硝化菌的缺氧微环境以及有机物和ρ(NH4+-N)的降解特性,促进了亚硝酸型SND的形成.  相似文献   

15.
In this study,a three-stage biological aerated filter(BAF) system was proposed for the enhancement of nitrogen removal in the treatment of low carbon-to-nitrogen ratio(C/N ratio) municipal wastewater.Operational parameters were studied for each process for maximum nitrite accumulation in the nitrification step and nitrite adaptation in the denitrification step.Nitrite accumulation during nitrification could be controlled by the dissolved oxygen(DO) concentration,presenting a mean value of 40% at around 1.0 mg DO/L.Denitrification could be adapted to nitrite and the process was stable if nitrite in the reactor was keep low.Once the operational parameters were established,the process was stable and a steady state was maintained for over 30 days,and the various indexes of discharged water were up to the Discharge standard of pollutants for municipal wastewater treatment plant(GB18918-2002) Level-one A.It was concluded that the three-stage BAF system proposed in this study was excellent in nitrogen removal performance by employing three-column functioning as short-cut nitrification,short-cut denitrification and secondary nitrification,respectively.  相似文献   

16.
采用MUCT工艺处理低ρ(C)/ρ(N)比实际城市生活污水,研究在短程硝化稳定运行的基础上实现亚硝酸型同步硝化反硝化(simultaneous nitrification and denitrification,SND).反应器在(28±2)℃下运行177 d,试验结果表明:通过控制溶解氧(DO)质量浓度为0.3~0.6 mg/L、水力停留时间(HRT)为6 h实现了短程硝化,亚硝酸盐积累率(nitrite accumulation rate,NAR)达到90%以上,短程硝化反硝化稳定运行118 d.在短程硝化的基础上,好氧区低氧运行实现了亚硝酸型SND,通过亚硝酸型SND途径的总氮去除率平均33%,最高达到56%.亚硝酸型SND途径下氨氮、总氮、磷的去除率明显提高,无外加碳源时分别达到99%、83%和96%.因此,MUCT工艺实现亚硝酸型SND是低碳源污水处理的一种有效的运行方式,能充分利用原水中的有机碳源,总氮去除率的提高和碳源的节省保证了磷的去除效果.  相似文献   

17.
为了研究低溶解氧微膨胀前后污泥硝化活性的变化,采用SBR反应器,平均DO浓度为0.6mg/L-0.9mg/L,测定污泥微膨胀前后污泥氧消耗速率曲线。结果表明:发生污泥微膨胀后,活性污泥对COD的去除能力有较大的提高,而对氨氮去除能力却有一定的下降。污泥微膨胀前后的氧消耗速率曲线显示,微膨胀前活性污泥总活性为67.72mgO2/gVSS·h,其中硝化活性为43.12mgO2/gVSS·h,占其总活性的63.67%;而微膨胀后活性污泥总活性为90.49mgO2/gVSS·h,其中硝化活性为23.98mgO2/gVSS·h,占其总活性的26.51%。低DO成为微生物生长的限制性基质,污泥微膨胀的状态下,活性污泥中丝状菌成为优势菌种,而硝化细菌成为非优势菌种,污泥的总硝化活性降低。  相似文献   

18.
为了进一步探讨同步硝化反硝化的反应机理,采用SBR工艺,考察溶解氧和污泥粒径分布对城市污水同步硝化反硝化的影响。结果表明:低溶解氧(平均DO-0.5~0.8mg/L)条件下,氮平衡计算证实SBR工艺发生了明显的SND现象,总氮中大约23.11%的氮是通过SND现象去除的。当DO浓度为0.5mg/L时,硝态氮生成量与氨氮的减少量之比为0.454,硝化速率与反硝化速率基本相当。当DO浓度为4.296mg/L时,硝化反应产生的氨氮的减少量与硝态氮的生成量相等,此时基本不发生SND现象。当SND发生时,污泥菌胶团颗粒的平均颗粒粒径仅为5.02μm~6μm,说明SND不是单纯的“微环境作用”的结果。  相似文献   

19.
半短程硝化-厌氧氨氧化处理污泥消化液的脱氮研究   总被引:6,自引:0,他引:6  
采用实验室规模的半短程硝化-厌氧氨氧化联合工艺,研究了对高氨氮、低ρ(C)/ρ(N)污泥消化液的处理能力.结果表明,在A/O反应器中,短程硝化在温度9~20℃、平均ρDO=5.4 mg/L、SRT值为30 d左右时,进水氨氮负荷0.64 kg/(m3.d)的条件下,经过29 d得以实现,通过控制游离氨ρFA>4 mg/L时,此后,从30—96 d,出水亚硝氮累积率维持在70%左右;短程硝化实现之后,进而实现了半短程硝化,出水氨氮与亚硝氮浓度比维持在1∶1.32左右;采用UASB反应器,接种由好氧颗粒污泥、厌氧颗粒污泥、氧化沟活性污泥及短程硝化活性污泥组成的混合污泥,在避光、厌氧、(30±0.2)℃、pH=7.3~7.9条件下,以污泥消化液经短程硝化处理后的出水为进水,初期进水氨氮、亚硝氮容积负荷分别为0.07、0.10kg/(m3.d),经过24d运行,氨氮和亚硝氮开始出现同步去除现象,195 d时总氮去除负荷达1.03 kg/(m3.d);待半短程硝化运行稳定和厌氧氨氧化反应成功启动后,将二者联立并运行了105 d,最终总氮去除率达到70%.  相似文献   

20.
以2种强化生物除磷(EBPR)系统中的活性污泥为研究对象,考察亚硝酸盐对聚磷菌厌氧代谢的影响,结果表明:不同EBPR系统中的聚磷菌对于亚硝酸盐的耐受能力不同.人工配水富集聚磷菌的活性污泥,当亚硝态氮浓度超过10 mg/L时,聚磷菌吸收VFA受到抑制,PHA的合成减少,磷酸盐的释放增加;处理生活污水的SBR短程脱氮除磷活性污泥,亚硝酸盐的浓度高达30 mg/L时,未对聚磷菌的厌氧代谢造成抑制,但引起异养反硝化菌与聚磷菌竞争VFA,导致PHA合成量和释磷量的减少.富集聚磷菌的活性污泥投加亚硝酸盐后P/VFA增大,说明有亚硝酸盐存在时更多的能量用于VFA的吸收.对2种活性污泥中聚磷菌的荧光原位杂交(FISH)定量分析表明:富集聚磷菌系统中聚磷菌含量达到55%,而短程脱氮除磷系统中为7.6%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号