首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
利用“厌氧生物反应器+潜流复合型人工湿地”组合工艺处理农村生活污水中氮和磷。厌氧生物反应器和潜流复合型人工湿地水力停留时间分别为24和48h,进水总氮、氨氮和总磷分别为10.3~51.8mg/L、6.8~44.7mg/L和0.9~5.2mg/L,组合工艺对总氮、氨氮和总磷的平均去除效率分别为30.7%、42.9%和72%,不同季节处理效率为:夏季〉春季〉冬季。组合工艺中的COD主要由厌氧水解酸化、基质截留、微生物代谢而被去除,氮主要由人工湿地微生物作用和植物吸收被去除,磷主要由人工湿地基质吸附被去除。系统整体脱氮效果的提高可采用在厌氧生物反应器后增加充氧装置,提高污水中的溶解氧,通过增强人工湿地中的硝化能力来实现。  相似文献   

2.
为探究低氨氮生活污水亚硝化的可行性,采用高负荷生物滤池-上向流曝气生物滤池(UBAF)两段式反应器考察水流方向对高负荷生物滤池去除COD、氨氮效果及温度、DO对UBAF亚硝化效果的影响.结果表明,在水力负荷为0.58 m3/(m2·h)、COD容积负荷为2.30 kg/(m3·d)、气水比为3.6∶1、常温条件下,上向流进水方式能够获得稳定的低COD、高氨氮的二级出水.在水温30~33 ℃、DO 2.5~3.0 mg/L、进水pH 7.8~8.1条件下,UBAF出水氨氮平均转化率为84.58 %,亚硝氮平均质量浓度达23.01 mg/L.UBAF反应器中各种含氮化合物沿程变化及FISH检测表明,在反应器末段存在一定程度的同步亚硝化厌氧氨氧化作用.该两段式反应器能驯化单独的脱碳、脱氮优势菌群,实现低氨氮生活污水的亚硝化.  相似文献   

3.
目的 考察各层填料和微生物共同作用对水体中氮磷有机物的去除情况,分析原因和机理,为人工湿地填料的构建提供依据.方法 在水力负荷0.65 m3/(m2·d)下采用蠕动泵连续进水,每天对1~5取样口出水的氨氮、亚硝态氮、硝态氮、磷酸根、COD进行监测,分析研究垂直流湿地中各填料层中的变化情况.结果 经过两周的污水自然挂膜,湿地填料系统逐渐成熟.对氨氮和COD的去除率稳定在90%以上.而对磷的去除效果有很大地波动,由最初的90%降至0,甚至出现解析现象.结论 人工湿地填料系统(微生物和填料)对氮和有机物去除较好,而对磷的去除有限,尤其是微生物对磷的去除贡献不大,沸石可以作为除氮的人工湿地填料.炉渣对磷的吸附虽有一定效果但不够持久.  相似文献   

4.
针对运河常州段微污染水源,进行了高锰酸钾-沸石联用预处理运河水中的COD和氨氮试验研究。通过试验得到:在投加聚合硫酸铁20mg/L,高锰酸钾1.0mg/L,沸石300mg/L时,运河水中的COD的含量从113.6mg/L下降到11.4mg/L;氨氮含量从2.55mg/L下降到0.43mg/L。去除率分别达到90.0%和83.1%,使有机物和氨氮的含量达到Ⅱ类水源水质标准。  相似文献   

5.
土地毛细管渗滤系统对城市生活污水的季节性处理效果   总被引:1,自引:0,他引:1  
对土地毛细管渗滤系统对城市生活污水净化效果及季节变化进行分析。结果表明,系统对COD,NH3-N有很好的去除效果,平均去除率在各季节稳定为76.4%和80.7%,平均出水浓度分别为36.6和4.2mg/L。系统对TN的去除效果较低,平均去除率为30.7%,而且TN去除率的季节性波动较大。系统对TP去除率随季节变化不明显,但随着土地毛细管渗率系统的运行.填料对TP的吸附逐渐饱和,TP去除率明显下降。  相似文献   

6.
化学改性对沸石去除水中碳、氮污染物的影响   总被引:2,自引:0,他引:2  
为提高沸石对水中多种污染物的去除效果,以水溶液中低浓度氨氮、硝态氮和有机物为研究对象,重点研究了乙酸、柠檬酸、柠檬酸钠、十二烷基磺酸钠(SDS)、氯化钠、十六烷基三甲基溴化铵(HDTMA)6种不同无机\有机化学改性剂对沸石去除氨氮、硝态氮、COD的影响.研究表明,对低浓度氨氮去除效果最好的为柠檬酸钠改性沸石,最佳浓度为0.05 mol/L,去除率为98.14%;对低浓度硝态氮去除效果最好的为HDTMA改性沸石,最佳浓度为0.05 mol/L,去除率为24.81%;对低浓度COD去除效果最好的为柠檬酸改性沸石,最佳浓度为0.05 mol/L,去除率为42.57%,且改性沸石阳离子交换容量的大小与其对氨氮的去除率呈正相关.同时得出了不同改性剂对沸石去除氨氮、硝态氮、COD的影响规律,并发现柠檬酸钠改性沸石同步去除水溶液中低浓度氨氮、硝态氮和COD的效果远高于原天然沸石.  相似文献   

7.
间歇流人工湿地处理生活污水试验研究   总被引:5,自引:0,他引:5  
通过试验,分析了间歇流人工湿地去除生活污水中污染物的效能.结果表明,在进水指标为:化学需氧量300mg/L~500mg/L,氨氮40mg/L~60mg/L,总磷9mg/L~16mg/L,水力停留时间4d,各项指标去除率分别为83%,75%,40%.试验表明,间歇流可以有效利用大气复氧,缓解植物根系放氧不足的矛盾,有助于污染物的去除.床体中填充石灰石,起到了调节pH值的作用.  相似文献   

8.
采用悬浮载体SBR工艺对生活污水进行了正常负荷及冲击负荷对比运行实验。结果表明:正常负荷运行时,出水CODCr稳定在12_32mg/L,去除率保持在90%以上;脱氮除磷效果较好,出水氨氮和总磷分别稳定在2.3-4.2mg/L和0.22珈.49mg/L,均达到GB18918.2002中一级A标准要求;系统抗冲击负荷能力强,在进水CODCr提高5倍的情况下,其去除率仍保持在85%以上;冲击负荷对脱氮除磷效果影响较大,氨氮和总磷的去除率均由正常情况下的85%左右下降至50%左右。  相似文献   

9.
对装填新型陶瓷填料和生物陶粒的2个曝气生物滤池系统进行了平行对比试验研究。分析了新型陶瓷填料用于曝气生物滤池处理生活污水的可行性及其优缺点,优化了曝气生物滤池系统运行参数。试验结果表明:在好氧区水力停留时间为1.5h,进水CODcr、NH4+-N、TP分别为135.6mg/L、42.1mg/L、069mg/L时,新型陶瓷填料BAF相应指标去除率依次为81.2%、99.8%、68.1%,生物陶粒BAF相应指标去除率依次为80.8%、99.5%、66.7%,在相同运行条件下,新型陶瓷填料反冲洗耗水量小、冲洗效果好、运行成本低。  相似文献   

10.
为了进一步探讨同步硝化反硝化的反应机理,采用SBR工艺,考察溶解氧和污泥粒径分布对城市污水同步硝化反硝化的影响。结果表明:低溶解氧(平均DO-0.5~0.8mg/L)条件下,氮平衡计算证实SBR工艺发生了明显的SND现象,总氮中大约23.11%的氮是通过SND现象去除的。当DO浓度为0.5mg/L时,硝态氮生成量与氨氮的减少量之比为0.454,硝化速率与反硝化速率基本相当。当DO浓度为4.296mg/L时,硝化反应产生的氨氮的减少量与硝态氮的生成量相等,此时基本不发生SND现象。当SND发生时,污泥菌胶团颗粒的平均颗粒粒径仅为5.02μm~6μm,说明SND不是单纯的“微环境作用”的结果。  相似文献   

11.
采用MUCT工艺处理低ρ(C)/ρ(N)比实际城市生活污水,研究在短程硝化稳定运行的基础上实现亚硝酸型同步硝化反硝化(simultaneous nitrification and denitrification,SND).反应器在(28±2)℃下运行177 d,试验结果表明:通过控制溶解氧(DO)质量浓度为0.3~0.6 mg/L、水力停留时间(HRT)为6 h实现了短程硝化,亚硝酸盐积累率(nitrite accumulation rate,NAR)达到90%以上,短程硝化反硝化稳定运行118 d.在短程硝化的基础上,好氧区低氧运行实现了亚硝酸型SND,通过亚硝酸型SND途径的总氮去除率平均33%,最高达到56%.亚硝酸型SND途径下氨氮、总氮、磷的去除率明显提高,无外加碳源时分别达到99%、83%和96%.因此,MUCT工艺实现亚硝酸型SND是低碳源污水处理的一种有效的运行方式,能充分利用原水中的有机碳源,总氮去除率的提高和碳源的节省保证了磷的去除效果.  相似文献   

12.
NH4^+-N与N02^- -N对连续流CANON反应器运行性能的影响   总被引:3,自引:0,他引:3  
为提高CANON反应器的TN去除效率,采用在好氧条件下直接启动的CANON反应器进行试验.试验过程中,控制温度在35℃±1℃、pH在7.39~8.01、曝气量为31.2 m3/(m3.h)、ρ(DO)约1.5~2.0 mg/L,水力停留时间为3.7 h,分别进行了ρ(NH4+-N)与ρ(NO2--N)的试验.试验发现,在曝气量恒定的条件下,ρ(NH4+-N)过高或过低都不利于TN去除率的提高,在上述试验条件下,当ρ(NH4+-N)为310~360 mg/L时,获得超过75%的TN去除率.提高反应器中的ρ(NH4+-N)与ρ(NO2--N)有利于TN负荷的提高,但二者超过50 mg/L时,继续提高无益.在进水不包含有机碳源的条件下,CANON反应器出水的ρ(TN)依然较高,还需要进一步的处理来满足排放标准.  相似文献   

13.
亚硝酸型硝化在生物陶粒反应器中的实现   总被引:2,自引:0,他引:2  
为确定低氨氮污水处理过程中的亚硝酸型硝化的特性,采用生物陶粒反应器对其亚硝化效果和稳定性进行研究.试验结果表明,在水温20~25℃,水力负荷0.6 m3/(m2.h),气水比(3~5)∶1,进水COD负荷106~316 mg/L,氨氮负荷42.78~73.62 mg/L的条件下,反应器对氨氮的平均去除率可达到81.32%,且亚硝酸氮积累率基本稳定地保持在91%~99%.结合反应器中氮元素沿程变化分析及反应器内生物膜中微生物的计数结果表明,通过控制低溶解氧,实现了在常温条件下稳定的亚硝酸盐积累.  相似文献   

14.
为了提高煤制气废水的厌氧处理能力,研究了实际工程中煤制气废水的外循环厌氧处理效果,并考察进水质量浓度、水力停留时间和投加甲醇对煤制气废水处理效能的影响.结果表明:煤制气废水的厌氧处理效率很低,进水COD和总酚质量浓度分别为1100mg/L和210mg/L时去除率分别为18.5%和20.3%,当进水COD质量浓度提高至2100mg/L时去除率分别为15.2%和25.5%.水力停留时间由24h延长至48h,COD和总酚去除率略有提高.投加甲醇控制COD含量为200~500mg/L,COD和总酚去除率分别提高至40.7%和35.2%.投加甲醇基质可以明显提高废水的厌氧处理效能,稀释作用或者延长水力停留时间的效果甚微.  相似文献   

15.
以某实际合成氨化工厂废水为研究对象,进行高氨氮化工废水缺氧/好氧(A/O)工艺高效短程生物脱氮中试研究.试验结果表明:A/O系统经过90 d的运行,实现了稳定的短程硝化,并获得了稳定的有机物和氮去除.亚硝态氮积累率维持在80%以上,COD、NH4+-N和TN的去除率分别达到了95%、99%和80%.此外,机理分析表明,A/O中试系统获得稳定短程硝化的主要因素为较低ρ(DO)、较高ρ(FA)及适宜HRT三者的协同调控.  相似文献   

16.
DO对膜曝气生物反应器同步除碳脱氮的影响   总被引:1,自引:0,他引:1  
为获得膜曝气生物反应器(membrane aerated bioreactor,MABR)处理污水同步除碳脱氮的最佳DO质量浓度,构建以亲水性聚丙烯中空纤维膜为曝气膜组件的MABR,在80 d连续运行的时间内,考察DO质量浓度对MABR处理模拟生活污水同步除碳脱氮效果的影响.结果表明:在水力停留时间8 h、膜表面COD...  相似文献   

17.
CAST工艺处理低C/N废水中DO对NO2-积累的影响   总被引:7,自引:0,他引:7  
研究了有效容积为72 L的循环式活性污泥法反应器在不同溶解氧浓度下,处理低碳氮比生活污水时,去除氨氮过程中亚硝酸盐积累的情况.选取5个DO浓度水平进行试验,结果表明,在低DO浓度下有效去除氨氮的同时,实现了长期稳定的亚硝酸盐积累,并且无污泥膨胀发生,当DO在0.5 mg/L时,系统内亚硝化率(NO2-/NOx-)可达80%以上,氨氮去除率>90%,SVI在109 mL/g左右;当DO<0.5 mg/L时,氨氮去除率下降;当DO>1 mg/L时,硝化反应较彻底,但硝化过程向全程硝化转化.  相似文献   

18.
为处理含有硫化物和有机物的废水,应用兼养脱硫反硝化缺氧附着生长反应器,并引入硝酸盐和亚硝酸盐作为电子受体.进水硫化物和有机物质量浓度分别为200 mg/L和20 mg/L,去除率分别达到99.9%和89.2%.在化学氧化和微生物氧化的共同作用下,硫化物转化为硫酸盐的比例为40%.反应器内自养反硝化与异养反硝化同时发生,异养反硝化的比例为21.76%.同时,针对亚硝酸盐负荷、亚硝酸盐与硝酸盐比例、氨氮负荷等含氮化合物参数对兼养脱硫反硝化的影响进行研究.结果表明:当NO2-负荷为50 mg/(L.d)、亚硝酸盐与硝酸盐的比为2、NH4+负荷为50 mg/(L.d)时,脱氮除硫的效果较好.  相似文献   

19.
两相厌氧系统处理乙酰螺旋霉素废水   总被引:5,自引:0,他引:5  
两相厌氧系统处理抗生素废水的生产性应用表明 :当两相厌氧系统进水pH ,VFA ,COD ,BOD5分别为 5 4 6 ,1376mg/L ,85 97mg/L ,4 12 6mg/L ,产酸器 (厌氧折流板反应器 )的停留时间为 12h时 ,pH由5 4 6升高至 6 18,VFA由 1376mg/L升高至 32 81mg/L ,BOD5/COD由 0 4 8升高至 0 5 2 ;产甲烷器 (厌氧复合床反应器 )的停留时间为 39h时 ,COD和BOD5的去除率分别为 90 4 %和 94 5 % .  相似文献   

20.
复合生物反应器亚硝酸型同步硝化反硝化   总被引:2,自引:1,他引:1  
以实际生活污水为对象,利用有效容积为12L的间歇式复合生物反应器(填料体积填充比为30%),通过控制ρ(DO)稳定实现了亚硝酸型同步硝化反硝化脱氮.试验结果表明,在同步硝化反硝化条件下,随着ρ(DO)的升高,亚硝化率逐渐降低,总氮去除率也呈下降趋势.曝气结束,ρ(DO)>4 mg/L时,系统的亚硝化率和总氮去除率均小于50%;当ρ(DO)为2 mg/L,温度维持在(28±1)℃,硝化过程中亚硝化率始终维持在85%以上,ρ(NH_4~+ -N)去除率大于98%,总氮去除率在75%左右.因此,在试验条件下,只要控制曝气量,使得曝气结束时反应器内ρ(DO)为2 mg/L,就可实现稳定的亚硝酸型同步硝化反硝化生物脱氮.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号