首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
在含赖氨酸的磷酸盐缓冲溶液中,用循环伏安法在制备好的纳米二氧化钛-壳聚糖玻碳电极上聚合聚赖氨酸薄膜,采用循环伏安法和示差脉冲法研究对甲基苯酚在聚赖氨酸/二氧化钛-壳聚糖修饰电极上的电化学行为.实验结果表明:聚赖氨酸/二氧化钛-壳聚糖修饰电极对对甲基苯酚的氧化具有良好的电催化作用,对甲基苯酚的浓度在6.0×10-6~1.0×10-4 mol/L范围内与峰电流呈良好的线性关系;检测限可达5.0×10-7 mol/L.该复合修饰电极可作为电化学传感器用于对甲基苯酚的含量测定及环境水体中实际样品的分析.  相似文献   

2.
在实验中将4arm-PEG-NH2和羟基苯基铁卟啉共价修饰到玻碳电极上,成功地制备了一种新型DA传感器.由于Fe(OH)4P和4arm-PEG-NH2的协同效应,使得该传感器对多巴胺的电催化活性得到明显的提高,氧化过电位也得到了降低.在示差脉冲伏安法测定中(多巴胺的检测范围为0.2~125μmol L?1),计算获得DA的检出限为1.02×10-8M.  相似文献   

3.
利用循环伏安法制备了聚结晶紫薄膜修饰电极(PCVE),并将该修饰电极用于有机磷农药的测定.在0.1 mol/L的柠檬酸缓冲溶液中(pH=2.0),对硫磷的质量浓度在1.0-8.0μg/mL的范围内与还原峰电流呈良好的线性关系,r=0.998 3,检出限为9.4×10-3μg/mL.该聚结晶紫修饰电极具有良好的重现性,对含对硫磷为0.50 mg/L的试液进行平行测定10次,得到标准偏差2.1%.该法用于实际水样的测定,结果满意.  相似文献   

4.
利用有序介孔碳具有巨大的比表面积、均一可调的介孔孔径以及良好的稳定性和导电性等优良性能,制备有序介孔碳修饰电极,并研究盐酸赛庚啶在有序介孔碳修饰电极上的电化学行为及其测定方法.采用滴涂法制备的有序介孔碳修饰玻碳电极作为工作电极,用循环伏安法测定盐酸赛庚啶.优化后的试验条件为:pH=6.0的磷酸盐缓冲液,分散液的修饰量为4μL,扫描速率为0.19 V/s.在优化条件下,盐酸赛庚啶的浓度在4.0×10~(-6)~1.0×10~(-4)mol/L内与对应的峰电流呈线性关系,检出限为1.2×10~(-6)mol/L.修饰电极用于盐酸赛庚啶片中盐酸赛庚啶的测定,回收率为98.9%~100.5%.实验结果表明:有序介孔碳修饰玻碳电极对盐酸赛庚啶有较好的电催化活性,与玻碳电极相比电流响应增强;该修饰电极易再生,稳定性和重现性较好,易操作、灵敏高;有序介孔碳修饰电极循环伏安法是一种简单快速检测赛庚啶的方法.  相似文献   

5.
在含赖氨酸的磷酸盐缓冲溶液中,用循环伏安法在制备好的纳米二氧化钛-壳聚糖玻碳电极上聚合聚赖氨酸薄膜,采用循环伏安法和示差脉冲法研究对甲基苯酚在聚赖氨酸/二氧化钛-壳聚糖修饰电极上的电化学行为.实验结果表明:聚赖氨酸/二氧化钛-壳聚糖修饰电极对对甲基苯酚的氧化具有良好的电催化作用,对甲基苯酚的浓度在6.0×10^-6~1.0×10^-4mol/L范围内与峰电流呈良好的线性关系;检测限可达5.0×10^-7mol/L.该复合修饰电极可作为电化学传感器用于对甲基苯酚的含量测定及环境水体中实际样品的分析.  相似文献   

6.
采用循环伏安法制备了钯纳米粒子-Nafion修饰玻碳电极(Pd/Nf/GCE)的甲醛电化学传感器,并采用循环伏安法(CV)和微分脉冲伏安法(DPV)研究了甲醛在该修饰电极上的电催化氧化作用.对修饰电极制备条件和实验条件进行了优化,在此基础上建立了一种测定甲醛的伏安分析方法.实验结果表明,甲醛在该传感器上的催化氧化作用显著;在0.1 mol/L NaOH溶液中,甲醛的氧化峰电流与其浓度在5.0μmol/L~5.0 mmol/L呈良好的线性关系,线性回归方程为:ip=7.69+2.22×104c,相关系数γ=0.996 7,检测限为1.0μmol/L,具有良好的重现性和回收率.  相似文献   

7.
采用循环伏安法制备了钯纳米粒子-Nation修饰玻碳电极(Pd/Nf/GCE)的甲醛电化学传感器,并采用循环伏安法(CV)和微分脉冲伏安法(DPV)研究了甲醛在该修饰电极上的电催化氧化作用.对修饰电极制备条件和实验条件进行了优化,在此基础上建立了一种测定甲醛的伏安分析方法.实验结果表明,甲醛在该传感器上的催化氧化作用显著;在0.1mol/LNaOH溶液中,甲醛的氧化峰电流与其浓度在5.0μmol/L-5.0mmol/L呈良好的线性关系,线性叫归方税为:ip=7.69+2.22×10^4c,相关系数Y=0.9967,检测限为1.0μmol/L,具有良好的重现性和回收率.  相似文献   

8.
在碳纳米管(CNTs)修饰的玻碳电极(GCE)上采用电化学沉积法制备了铂微粒/碳纳米管修饰电极(Pt/ CNTs/GCE),并以该修饰电极作为甲醛的电化学传感器,用循环伏安法(CV)和线性扫描伏安法(LSV)研究了甲醛在该电极上的电化学行为,优化了实验条件,在此基础上建立了一种测定甲醛的伏安分析方法.实验表明:在0.01 mol/L硫酸溶液中,富集电位为-0.1 V且富集时间为3 min时,甲醛的氧化峰电流与其浓度在8.0μmol/L~1.0 mmol/L呈良好的线性关系(r=0.996),检测限为3.0μmol/L(信噪比为3:1).所提出的测定甲醛的方法具有较高的灵敏度和较好的重现性。  相似文献   

9.
建立了同时测定水样中3种微囊藻毒素MC-RR、MC-LR、MC-YR的固相萃取-超高效液相色谱三重四级杆质谱的方法。水样采用HLB固相萃取小柱富集和净化,甲醇溶液洗脱,过0.20μm滤膜后,利用超高效液相色谱三重四级杆质谱检测。在该方法的试验条件下,MC-RR、MC-LR、MC-YR的线性范围在1.0~200.0μg/L之间,3.143倍信噪比下最低检出限分别为2.6 ng/L(MC-RR)、2.7 ng/L(MC-YR、MC-LR)。方法用于分析实际水样,平均加标回收率分别为95.2%~100.4%之间,相对标准偏差(n=7)在3.0%~8.7%之间。  相似文献   

10.
制备L -半胱氨酸自组装膜修饰金电极,并研究抗坏血酸在修饰电极上的电化学行为,同时建立了利用修饰电极催化作用快速测定抗坏血酸的方法.在含有抗坏血酸的0.1mol/L HAc-NaAc(pH=4.0)缓冲溶液底液中,在-0.20~0.60V(vs,SCE)电压范围内,用修饰电极作为工作电极进行循环伏安扫描,抗坏血酸分别在峰电位Epa=0.264V,Epc=0.199V(vs.SCE)处产生灵敏的催化氧化还原峰.修饰电极对抗坏血酸的催化氧化峰与抗坏血酸的浓度在4.0×10-7~7.0×10-4mol/L范围内呈良好的线性关系.用该方法测定抗坏血酸检出限可达1.0×10-7mol/L.利用该方法测定维生素C丸中的抗坏血酸含量,结果令人满意.  相似文献   

11.
采用气相沉积法在膨胀石墨(EG)层片间生长碳化硅(SiC)晶须,制备出复合材料碳化硅@膨胀石墨(SiC@EG),并通过改变气相沉积的温度(分别为1 200 ℃、1 300 ℃、1 400 ℃)制备出不同形貌的SiC@EG. 所得材料用扫描电镜和循环伏安法及交流阻抗技术进行表征,结果表明1 300 ℃下制得的SiC@EG具有较好的电化学性能,将其作为新型修饰电极材料应用于对酚类环境激素的检测,研究了辛基酚在SiC@EG修饰电极上的电化学行为. 通过考察辛基酚在SiC@EG修饰电极上氧化行为的影响因素,对实验条件进行了优化. 在最优条件下,辛基酚的氧化峰电流和浓度在0.1 μmol / L~10 μmol/L范围内呈现良好的线性关系,检测限达35 nmol/L.  相似文献   

12.
制备了三维花状氧化铜纳米材料及氧化铜(CuO)/还原氧化石墨烯(rGO)纳米复合材料,并利用SEM、TEM、XRD、Raman和XPS对合成的纳米材料进行了表征.将所制备的纳米材料应用于修饰电极构建扑热息痛生物传感器,实验结果显示:相比于氧化铜和还原氧化石墨烯的单一材料,纳米复合材料修饰的电极对检测扑热息痛具有较强的氧化还原能力,并且在浓度3.00~500 μmol/L范围内呈良好的线性关系,检出限为0.19 μmol/L(S/N=3).此外,该生物传感器用于测定实际样品的结果令人满意.  相似文献   

13.
A simple and rapid strategy to construct laccase biosensor for determination of catechol was investigated. Magnetic multiwalled carbon nanotubes (MMCNT) which possess excellent capability of electron transfer were prepared by chemical coprecipitation method. Scanning electron microscope (SEM) and vibrating sample magnetometer (VSM) were used to identify its surfacetopography and magnetization, respectively. Laccase was immobilized on the MMCNT modified magnetic carbon paste electrode by the aid of chitosan/silica (CS) hybrid membrane. Using current-time detection method, the biosensor shows a linear response related to the concentration of catechol in the range from 10−7 to 0.165×10−3 mol/L. The corresponding detection limit is 3.34×10−8 mol/L based on signal-to-noise ratios (S/N) ≥3 under the optimized conditions. In addition, its response current retains 90% of the original after being stored for 45 d. The results indicate that this proposed strategy can be expected to develop other enzyme-based biosensors.  相似文献   

14.
基于多壁碳纳米管修饰印刷碳电极对甲氧氯普胺的电催化作用,建立了测定甲氧氯普胺的流动注射计时电流法与印刷碳电极相比,多壁碳纳米管修饰印刷碳电极显著降低了甲氧氯普胺的氧化峰电位,提高了氧化峰电流.测定甲氧氯普胺的线性范围为8.04×10^-5-1.0×10^-3mol/L,检出限为5.0×10^-5mol/L(S/N=3);1.0×10^-4mol/L的甲氧氯普胺测定的RSD为3.0%(n=9).方法已成功应用于药片中甲氧氯普胺含量的测定.  相似文献   

15.
采用水热法在钛纳米管表面原位生长NiAl-LDH,制得NiAl-LDH修饰的TiO2纳米管电极,采用SEM对水滑石薄膜在TiO2纳米管表面的形貌进行表征,利用循环伏安曲线、线性扫描伏安曲线对修饰电极的催化性能进行表征,并测定电极对葡萄糖溶液浓度的标准曲线.结果表明:NiAl-LDH负载在TiO2纳米管的表面及周围,经NiAl-LDH修饰后的纳米管结合了TiO2纳米管的光催化及NiAl-LDH的电催化性能,对光的敏感度更高,对葡萄糖的氧化能力更强,葡萄糖浓度在1~5 mmol/L范围内电流与浓度有良好的线性规律,相关系数为0.997 6,检出限为0.05 mmol/L.  相似文献   

16.
制备了石墨烯碳糊电极,利用十六烷基三甲基溴化铵作为区分试剂考察了抗坏血酸在此电极上的电化学行为,讨论了电极制备条件、十六烷基三甲基溴化铵的用量及多巴胺的存在对抗坏血酸电化学行为的影响。结果表明,在pH=6.5的磷酸盐缓冲溶液中,并于1.0×10-5mol/L多巴胺存在下,抗坏血酸氧化峰电流与其浓度在2×10-5~5×10-4mol/L范围呈线性关系,最低检出限为8×10-6mol/L。并用塔菲尔法测定了抗坏血酸电极过程的动力学参数,其电荷传递系数β=0.443,标准速率常数k0=(3.73±0.10)×10-5cm/s。电位阶跃法测得抗坏血酸的扩散系数D=4.86×10-5cm2/s。此电极有良好的重复性和稳定性。应用此方法分析了含多巴胺的抗坏血酸的混合溶液,测定结果的相对标准偏差R=1.24%,回收率在100.74%~102.34%之间。  相似文献   

17.
采用涂覆法制备多壁碳纳米管(MWCNT)-离子液体([BMIM]PF6)修饰电极,研究Cu2+在该修饰电极上的阳极溶出伏安行为。考察了实验条件对Cu2+电化学行为的影响。研究表明,Cu2+在修饰电极上可得到灵敏的溶出峰。在优化的实验条件下,Cu2+在1.0×10-6~1.0×10-5mol/L浓度范围内与其氧化峰电流呈良好的线性关系,相关系数为0.998 4,检出限为9.0×10-8mol/L。该修饰电极制备简单,重现性好,用于微量铜的检测,效果良好。  相似文献   

18.
提出了浊点萃取石墨炉原子吸收法同时测定宁夏枸杞中痕量镉和铅的方法。考察了pH值、表面活性剂和螯合剂的浓度、加热温度和时间等影响因素,在最佳条件下,镉和铅的检出限(3s/k)达到0.008μg/L和0.105μg/L;相对标准差(n=7)分别为1.90%和1.28%。对于10 mL样品溶液的富集倍数分别为13.6和10.4。应用该方法测定了宁夏枸杞中的镉和铅的含量,加标回收率分别96.0%~98.0%和95.5%~98.0%。  相似文献   

19.
在碳糊中加入CdTe量子点制成修饰电极(CdTe/CPE),并研究了多巴胺(DA)在该修饰电极上的电化学行为.实验结果表明:在pH 7.0 PBS缓冲液中,电极上的CdTe量子点对DA的氧化还原呈现明显的电催化作用,电催化过程为表面吸附控制过程.闭路吸附时间为60s达到饱和,此电极可用于测定DA,响应迅速(1.5 s).峰电流与DA浓度在4×10-4-5×10-5 mol/L范围内呈线性关系,灵敏度高达0.061 9 A·L/mol,检测极限可达1.4 × 10-6mol/L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号