首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 294 毫秒
1.
磷石膏颗粒级配、结构与性能研究   总被引:15,自引:1,他引:14  
磷石膏的颗粒级配、结构是影响性能的重要因素.采用筛分、沉降天平分析、SEM显微结构分析,研究了磷石膏颗粒级配与二水石膏晶体形貌,测定了不同形态磷与有机物等杂质在磷石膏中分布.分析、测试了磷石膏胶结材的结构与性能.结果表明磷石膏的颗粒级配、形貌与天然石膏存在明显差异,它的颗粒级配成正态分布,二水石膏晶体粗大、均匀,以板状为主,其尺度比天然二水石膏晶体粗大.可溶磷与有机物覆盖于二水石膏晶体表面,其含量随磷石膏粒度增加而增加.粉磨使磷石膏颗粒形貌多样化,并改善颗粒级配,降低其胶结材需水量,使硬化体结构趋于密实,强度得以提高.磷石膏经过中和、粉磨预处理可制备出优等品建筑石膏.  相似文献   

2.
磷石膏颗粒级配、杂质分布对其性能影响的研究   总被引:12,自引:0,他引:12  
采用激光粒度测定仪、筛分和SEM研究了磷石膏的颗粒级配和二水石膏晶体的形貌,测定了不同粒径磷石膏中杂质的种类和含量,测试了不同粒径磷石膏的性能。结果表明:磷石膏的颗粒级配、形貌与天然石膏存在明显不同,磷石膏中的杂质含量随粒径不同而存在差异。  相似文献   

3.
共晶磷是磷石膏中仅次于可溶磷的有害杂质,影响了磷石膏的应用性能。采用分析纯模拟共晶磷的生成条件制取共晶磷含量较高的石膏样品,经煅烧成半水石膏后加入到天然建筑石膏中,进行物理力学性能试验,并利用扫描电镜、原子吸收光谱、红外吸收光谱结合化学分析的手段,研究了共晶磷对石膏性能的影响及其作用机理。结果表明:共晶磷明显降低了建筑石膏的水化率,使二水石膏析晶过饱和度降低,晶体粗化,结构疏松,硬化体强度降低。在二水石膏煅烧成半水石膏的过程中共晶磷并没有发生变化,仍存在于石膏晶格中;在建筑石膏水化过程中,共晶磷从晶格中溶出,变成可溶性磷HPO42-溶解在浆体中,HPO42-电离出H+和PO43-,其中PO43-又迅速与溶液中大量存在的Ca2+结合,转变为难溶性Ca3(PO4)2覆盖在晶体表面,阻碍了石膏的进一步水化,从而导致硬化体强度降低,而富余的H+则导致了浆体pH值的降低。  相似文献   

4.
研究了在混磨工艺下,大掺量混合材水泥中粉煤灰、矿渣的优化比例.固定混合材总量为44%和粉磨时间不变,对不同粉煤灰、矿渣用量的水泥颗粒级配和力学强度进行了测试,同时分析了掺混合材对水泥石孔隙结构和微观形貌的影响.结果表明:矿渣掺量占总混合材料用量的27%~34%时,水泥颗粒级配和力学性能最佳.掺配比例合理的大量混合材使水泥石孔隙结构细化,水泥石中大于100μm的粗孔明显减少或消失,即显著增加了小于0.1μm的细孔含量;同时可使水泥石微观结构均匀致密,大量层片状聚集的氢氧化钙晶体消失.  相似文献   

5.
半水石膏性能与微观结构的探讨   总被引:7,自引:0,他引:7  
XRD、SEM分析表明对α型半水石膏晶体呈短柱状、结晶完好,β型半水石膏晶体呈片状、结晶较差;α型半水石膏水化物晶体呈板柱状,晶体交织形成致密硬化体结构,β型半水石膏水化物晶体呈针状、纤维状,晶体交织形成疏松的硬化体结构。晶体结构与形貌上的差异是导致α型半水石膏与β型半水石膏性能特别是力学强度差异的原因。  相似文献   

6.
通过XRD,SEM微观分析和宏观强度测试手段,探讨了适合做胶结料磷石膏颗粒的最大粒径,并对磷石膏一粉煤灰复合胶结料的最优配合比进行了优化,最后利用胶结料和砂子按不同水胶比和胶砂比浇筑成型制砖。研究结果表明,适合做胶结料的磷石膏颗粒最大粒径为4.75mm,磷石膏-粉煤灰复合胶结料的最优配合比为:磷石膏:生石灰:水泥:粉煤灰=40:15:10:35。用胶砂比为1:2.7,水胶比为0.45的胶结料浇筑成型,经90℃蒸汽养护10h可制成满足国标MU20级的免烧砖。  相似文献   

7.
为提高磷石膏在水泥中的有效利用,分析磷石膏对水泥性能的影响,采用红外吸收光谱、色质联谱等测试手段对磷石膏中有机物进行定性和定量分析,并研究有机物对水泥性能的影响。结果表明,磷石膏中有机物为乙二醇甲醚乙酸酯、异硫氰甲烷、3-甲氧基正戊烷、2-乙基-1,3-二氧戊烷。有机物主要以物理吸附形式分布在石膏晶体表面,含量约为0.1%~0.2%。它使水泥凝结时间延长,强度降低,尤其是28天抗压强度有较大的下降,通过浮选处理可清除。  相似文献   

8.
通过x射线衍射分析,孔结构分析,并结合宏观试验结果,分析了二水石膏沸渣胶结材水化与凝结硬化,并对外加剂、养护制度对材性的影响及耐水性提高的原因进行了阐述。  相似文献   

9.
柠檬酸对石膏析晶过饱和度和微结构的影响   总被引:1,自引:0,他引:1  
利用SEM扫描电镜、MIP压汞测孔技术和原子吸收光谱等测试手段,系统研究了柠檬酸对建筑石膏水化进程、液相离子浓度与过饱和度、二水石膏晶体形貌、硬化体结构的影响。结果表明:柠檬酸是建筑石膏的高效缓凝剂,它使建筑石膏水化进程减慢,水化诱导期延长,早期水化率降低;柠檬酸使早期液相离子浓度和过饱和度降低,使二水石膏晶体尺度增大,并改变二水石膏晶体生长习性,使晶形由针状转变为短柱状;柠檬酸使石膏硬化体大孔增加,孔径分布粗化。  相似文献   

10.
低温陶瓷化磷石膏基复合胶凝材料研究   总被引:2,自引:0,他引:2  
以磷石膏为基体原料制备高强α-半水石膏基复合材料,利用工业废渣中的激发剂来改进半水石膏的结晶性质,以消除磷石膏中磷、氟等杂质对磷石膏制品性能影响,同时激发剂使具有潜在活性的矿渣得以活化,制备的低温陶瓷化磷石膏基复合材料制品兼具陶瓷和石膏性能;SEM图片表明,制备的复合材料水化后晶体结构粗大、致密.  相似文献   

11.
以磷石膏为基体原料制备高强α-半水石膏基复合材料,利用工业废渣中的激发剂来改进半水石膏的结晶性质,以消除磷石膏中磷、氟等杂质对磷石膏制品性能影响,同时激发剂使具有潜在活性的矿渣得以活化,制备的低温陶瓷化磷石膏基复合材料制品兼具陶瓷和石膏性能;SEM图片表明,制备的复合材料水化后晶体结构粗大、致密.  相似文献   

12.
磷石膏矿渣胶结材料性能的研究   总被引:3,自引:0,他引:3  
本文采用正交试验法较系统地研究了磷石膏矿渣化,石灰,硫酸钠,硫酸亚铁等因素对胶结材的强度的影响,找出了影响胶结材强度的主要因素和生产的最佳条件,并对该胶结材的性能和水化硬化特点进行了初步探讨。  相似文献   

13.
磷石膏的物化特征及其作为建筑材料的性能研究   总被引:2,自引:0,他引:2  
采用化学分析、原子吸收光谱、x射线衍射、扫描电子显微镜、激光粒度仪等仪器对磷石膏的化学成分、放射性、晶体外观、粒度分布以及磷、氟、有机物等杂质含量进行了测定,分析了各项理化指标对磷石膏用于生产建材的影响.测定了采用不同的处理方式处理后的磷石膏的杂质含量,并对其作为建筑材料的性能进行了研究.结果表明:预处理后的磷石膏能作为建筑材料应用.  相似文献   

14.
影响α半水石膏粒度、形貌及强度的因素   总被引:1,自引:2,他引:1  
目的制备高纯度的医用α半水石膏并能进一步控制好晶体的粒度、形貌.方法采用加压水溶液法并在转晶剂作用下制备α半水石膏,在体视显微镜下分析转晶剂、蒸压时间对晶体粒度、形貌的影响及晶体粒度、形貌与强度之间的关系.结果试验结果表明,只有晶体粒度大小适当的、晶体形貌是六方短柱的、晶面完整的α半水石膏才具有较高的强度.制备了二轴平均径12.5μm、长径比2:1、单一粒径水膏比0.22、3d抗压强度达到61.1MPa的α半水石膏.结论复合转晶剂适当的比例和掺量、蒸压时间是控制α半水石膏晶体粒度、形貌及强度的关键因素.  相似文献   

15.
再生石膏相组成、热性能及微观形貌变化研究   总被引:2,自引:0,他引:2  
通过相组成分析、DSC/TG和SEM对再生石膏(RG)的相组成、热性能和微观形貌的变化进行研究并分析其变化机理,旨在揭示再生石膏与天然石膏、建筑石膏存在明显差异。结果表明,再生半水石膏(R-P)的相组成发生改变,半水相降低3.5%左右;再生石膏的热稳定性下降,第一次脱水温度降低8℃左右,第二次脱水温度降低6℃左右;再生石膏的结晶变差,晶体中裂纹和孔隙增多,晶粒分布不均匀。分析表明,R-P中半水相含量的降低是由于RG中二水相含量降低及颗粒大小分布不均所致,再生石膏结晶水脱水焓的降低以及再生石膏颗粒的减小是造成再生石膏和天然石膏热性能差别大的主要原因。  相似文献   

16.
在水泥生产中,常使用天然石膏作为缓凝剂。为了节约天然资源,并满足高温环境下施工的需要,可将磷石膏与天然石膏混合用作水泥缓凝剂。磷石膏的掺入,既能保证水泥强度,又能减少熟料的掺入量,可节约成本,降低能耗。与单掺入天然石膏相比,同时掺入磷石膏与天然二水石膏,其总加入量相对较少,且SO_3含量相对较低,水泥凝结时间相对较长,符合国家标准;同时,在水泥磨制中熟料掺入量也相对较低,但水泥的28 d抗压强度也较高。  相似文献   

17.
研究了磷石膏制备β-半水石膏粉的工艺条件。采用常规分析、XRD和扫描电镜等方法对磷石膏原料、磷建筑石膏粉和石膏产品进行分析和表征。结果表明:磷石膏的最佳脱水温度为170℃、脱水时间为7h、陈化时间为4d,石膏砌块的抗压强度达到10.2 MPa。SEM分析表明,石膏砌块内部结构致密、晶体间的交织搭接较好,是抗压强度升高的主要原因。  相似文献   

18.
缓凝剂对建筑石膏结构与强度的负面影响   总被引:13,自引:0,他引:13  
利用SEM扫描电镜、MIP压汞测孔技术等测试手段.系统深入地研究了柠檬酸、多聚磷酸钠、骨胶3类常用典型缓凝剂对建筑石膏水化早期液相过饱和度、晶体形貌以及硬化体孔结构的影响,研究了石膏强度损失的内在原因和机制.结果表明:缓凝剂降低了胶凝材水化早期液相过饱和度,改变了二水石膏结晶习性和晶体形貌,晶体明显粗化,晶形也由针状转变为短柱状,大大削弱了晶体间的搭接,硬化体孔径增大,大孔比例明显增加,孔结构劣化,并最终导致建筑石膏强度的大幅度降低.强度损失与其缓凝效果基本成正比,掺量越高,缓凝时间越长,强度损失越大.  相似文献   

19.
采用常压复合盐溶液水热法对钙基湿法烟气脱硫(FGD)工艺的副产品FGD石膏进行转化,以制备α-半水石膏。利用DSC/TG综合热分析、SEM和化学分析对转化后的石膏样品进行研究。结果表明,FGD石膏转化为α-半水石膏的过程遵循溶解-重结晶机理。在重结晶诱导期内,FGD石膏首先在热盐溶液中溶解,形成硫酸钙过饱和溶液,在一定的过饱和度区域内,α-半水石膏雏晶直接从溶液中析出,发生石膏晶体亚微观结构上的改变。随后石膏雏晶继续生长,形成了均匀粗大的棱柱状α-半水石膏晶体,实现结晶物质在各个晶体上的重新分布。  相似文献   

20.
通过正交试验获得磷石膏—矿渣—粉煤灰—石灰—水泥胶凝体系的优化配合比为磷石膏∶矿渣∶粉煤灰∶生石灰∶水泥=30∶25∶24.5∶10.5∶10,并通过XRD、SEM微观分析手段和宏观测定强度的方法探讨了养护制度对该胶凝体系性能的影响。研究结果表明:该胶结料90℃下蒸养7 h,然后自然养护,28 d抗压强度高达43.9MPa,凝结时间正常,耐水性良好。胶结料强度随养护温度的升高而增加;90℃下,胶结料强度随蒸养时间的增加而增加,此温度下蒸养13 h所得制品,7 d抗压强度便达到39.6 MPa。利用最优配比成型的免烧砖能达到非烧结粘土砖15级的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号