首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了扩大纳米TiO_2在可见光范围的吸收,进行在纳米TiO_2中掺入Ag实验.以工业级偏钛酸、硝酸银为主要实验原料,采用一种简易的方法制备出Ag/TiO_2纳米粒子,并通过X线衍射(XRD)、扫描电子显微镜(SEM)、透射电镜(TEM)、X射线光电子能谱(XPS)、紫外一可见光吸收光谱(UV-vis)对该粒子进行表征.结果表明,二氧化钛以锐钛型晶型,银以单质的形式存在于纳米复合粒子中;Ag的结合能367.476 eV(3d_(3/2))与373.453 eV(3d_(5/2))分别比纯银的结合能368.4 eV(3d_(3/2))与374.4 eV(3d_(5/2))低,这是由于制备Ag/TiO_2时煅烧温度较纯银高,银簇生长较大引起的;并显示复合粒子的粒径约为30 nm;Ag/TiO_2纳米粒子感应波长明显红移,增强了纳米TiO_2在可见光范围内的吸收.  相似文献   

2.
The transparent C-doped TiO2 nanostructure films were fabricated on the silicate glass substrates by sol-gel spin-coated method. The as-prepared films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible absorption spectra (UV-vis) and X-ray photoelectron spectroscopy (XPS). The photocatalytic activity was evaluated via the photo-catalytic oxidation of methylene blue in aqueous under daylight irradiation at room temperature. The results show that the daylight-induced photocatalytic activities of the as-prepared films are improved by the C-doping. The calcination temperatures significantly affect the morphology, microstructure and photocatalytic activity of the as-prepared samples. At 723 K, the C-doped TiO2 films exhibit the highest photocatalytic activity due to the synergetic effects of good crystallization, appropriate oxygen vacancies and strong absorption in the near UV and visible-light region.  相似文献   

3.
Photocatalytic reduction of CO2 was carried out on villiform spherical catalysts of Pd-TiO2 in isopropanol solution. The catalysts were synthesized by hydrothermal method, their structures, morphologies and optical absorption properties were characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and UV-vis absorption spectroscopy (UV-vis). The photocatalytic activities with different loading amounts and morphologies were evaluated for determining the dominant effect and optimizing the catalyst preparation. Based on a villiform spherical TiO2 with the largest specific surface area in our experiments, we prepared a set of catalysts with various loading amounts of palladium and tested them by bubbling CO2 through the slurry of catalyst and isopropanol. The highest formation rate of isopropyl formate was 276.6 μmol/g·cat/h. Eventually we proposed the reaction mechanism.  相似文献   

4.
The sheet-like nano TiO2 particles were prepared by using hydrothermal method, and were characterized by X-ray diffraction(XRD), infrared spectroscopy(IR), and transmission electron microscopy (TEM). It is found that the nanoparticle sizes and crystallinity increase with the increase of hydrothermal temperature from 150 ℃ to 160 ℃, and then to 180 ℃. With the increase of particle sizes, the absorption capacities and photocatalytic abilities of as-prepared TiO2 particles for crystal violet become better and better. The nano TiO2 with big particles is more stable than that with small particles, although its initial photocatalytic activity is relatively lower compared with that of the small particle samples.  相似文献   

5.
Ag loaded mesoporous silica-embedded TiO2 nanocomposites were successfully synthesized via two different routes, including one-pot solvothermal method and solvothermal-chemical reduction method, both using Titanium (IV) n-butoxide (Ti(OC4H9)4) as a precursor, formic acid as a solvent and reducing agent, silver nitrate as a silver source and tetraethyl silicate (TEOS) as a stabilizer. The transmission electron microscopic (TEM) images showed that silica-embedded anatase TiO2 sample exhibited approximately rhombic shape and Ag nanoparticles could be embedded into the nanocomposites or deposited on the surface with high dispersion. The N2 adsorption-desorption isotherms indicated that the silica-embedded anatase TiO2 had obvious mesoporous structure with a BET specific surface area of 203.5 m2·g-1. All Ag loaded silica-embedded TiO2 composites showed a higher photocatalytic H2-generation activity from water splitting under simulative solar light irradiation than that of TiO2 products. The maximum H2 production rate (6.10 mmol·h-1·g-1) was obtained over 2% Ag/silica-embedded TiO2 nanocomposites (2% Ag/MST) prepared by solvothermal-chemical reduction method, which was 20 times that achieved on the silica-embedded TiO2 sample. The enhanced photocatalytic H2-evolution activity of Ag loaded mesoporous silica-embedded TiO2 nanocomposites can be attributed to the multi-function of surface Ag co-catalyst, mesoporous structure, and embedding of silica.  相似文献   

6.
The synthesis of Bi2S3 hierarchical nanostructure was reported by a solvothermal reaction using ethylene disulfhydrate as the sulfur source and chelating reagent. The as-synthesized samples were characterized by X-ray diffraction (XRD), Raman, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and photoluminescence (PL). The XRD, Raman, and XPS data confirmed that the as-synthesized sample belongs to orthorhombic phase Bi2S3. The SEM observations displayed that Bi2S3 hierarchical nanostructure assembled from nanorods. A 410 nm ultraviolet photoluminescence (PL) emission of as-synthesized Bi2S3 was observed when the sample was excited with wavelength of 320-330 nm. The Bi2S3 hierarchical nanostructure also shows a significant enhancement of photocatalytic capability toward degrading methyl orange (MO) under UV light, the photodegradation of MO reaches 95% within 180 min.  相似文献   

7.
The formation of Ag clusters on titanium oxide (TiO2) nanoparticles was achieved by self-assembly process and calcination. The obtained nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and ultraviolet visible spectroscopy (UV-Vis), and conventional techniques (XRD, TEM and UV-Vis) were used to identify Ag particles on the TiO2 surfaces. The results show that Ag-TiO2 particles can be applied to improve catalytic activity of the epoxidation of styrene oxides. Styrene oxide is the main product of catalytic reaction with H2O2 as the oxidant by using Ag-TiO2 nanoparticles as catalysts. High catalytic activitity of styrene oxide can be obtainable at 80 ℃. The reaction temperature, reaction time, the molar ratio of H2O2/styrene and solvent affect greatly the catalytic epoxidation of styrene.  相似文献   

8.
BiVO4 photocatalysts were synthesized by a surfactant free hydrothermal method without any further treatments, and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS), Raman spectroscopy, and Brunauer-Emmett-Teller (BET) surface area techniques. The photocatalytic activity was evaluated for the degradation of the methylene blue (MB) under visible light irradiation. Seen from the structural and morphological characterization, it is stated that the obtained samples present monoclinic phase, and the pH value has significant influence on the morphologies. The enhanced photocatalytic performance was associated with its crystallinity, unique morphology, band gap energy, BET specific surface area, surface charge and adsorption capacity. The recycle experiments results show that the BiVO4 photocatalysts have excellent photo-stability, and we deduced a possible mechanism by examining the effects of the active species involved in the photocatalytic process for MB photocatalytic degradation.  相似文献   

9.
A series of nanocrystalline V-doped (0.0-3.0 at.%) TiO2 catalysts have been successfully prepared by the one-step solution combustion method using urea as a fuel. The obtained powders were characterized by XRD, SEM, Raman, XPS and UV-Vis DRS. The effects of V doping concentration on the phase structure and photocatalytic properties were investigated. XRD, Raman, and XPS show that V doping diffuses into TiO2 crystal lattice mainly in the form of V5+ and causes a phase transition from anatase to mille. V doping can widen the light absorption range of TiO2, with the absorption threshold wavelength shifting from 425 to 625 nm. The photocatalytic activity of V-doped TiO2 powders were evaluated by the photocatalytic degradation of methyl orange (MO) under visible light irradiation. It is found that V doping enhances the photoeatalyilc activity under visible light irradiation and the optimal degradation rate of MO is about 95.8% with 1.0 at% V-doped TiO2.  相似文献   

10.
Ag-TiO2 thin films were prepared on glasses.The morphology and structure of Ag-TiO2 films were investigated by XRD.SEM and FT-IR.The photocatalytic and hydrophilic properties of Ag-TiO2 thin films were also evaluated by examining photocatalytic degradation dichlorophos under sunlight illumination and the change of contact angle respectively.The research results show that the Ag-TiO2 thin film is mainly composed of 20-100nm Ag and TiO2 particles,The Ag-TiO2 thin films possess a super-hydrophilic ability and higher photocatalytic activity than that of pure TiO2 thin film.  相似文献   

11.
Novel Bi2S3/BiOCl photocatalysts were successfully synthesized via a facile biomolecule-assisted solvothermal method and biomolecule L-cysteine was used as the sulfur source. The structures, morphology, and optical properties of the synthesized samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, transmission electron microscopy (TEM), and UV-vis diffuse reflectance spectroscopy (DRS). The presence of Bi2S3 in the Bi2S3/BiOCl composites could not only improve the optical properties but also enhance the photocatalytic activities for the degradation of Rhodamine B (RhB) under visible-light irradiation (λ > 420 nm) as compared with single Bi2S3 and BiOCl. Especially, the sample displayed the best performance of the photodegradation when the feed molar ratio of BiCl3 and L-cysteine was 2.4:1, which was about 10 times greater than that of pure BiOCl. The enhanced photocatalytic activities could be ascribed to the effective separation of photoinduced electrons and holes and the photosensitization of dye. Moreover, the possible photodegradation mechanism was also proposed, and the results revealed that the active holes (h+) and superoxide radicals (?O2 ?) were the main reactive species during photocatalytic degradation.  相似文献   

12.
TiO2 films were coated on the surface of diamond particles using a sol-gel method. The effects of heat treatment temperature on the morphology, phase composition and chemical bond of diamond particles coated with TiO2 films were investigated through SEM, TEM, X-ray diffraction analysis, Raman spectroscopy, FTIR, and XPS. The results showed that when being heat-treated at 600 °C, the amorphous TiO2 film transfered to the anatase film which bonded well with diamond substrate. Meanwhile, the Ti-O-C bond formed between TiO2 film and diamond substrate. When being heat-treated at 800 °C, TiO2 film was still anatase, and partial diamond began to graphitize. The graphitizated carbon could also form the Ti-O-C bond with TiO2 film, although TiO2 film would tend to crack in this case.  相似文献   

13.
采用溶胶凝胶和浸渍煅烧相结合的方法,制备出了具有p-n异质结结构的球形二氧化钛表面负载氧化镍颗粒的复合光催化剂.利用XRD、TEM、UV-Vis和PL等方法对催化剂的晶相组成、微观结构、吸光性能和光致发光性能等进行了表征.结果表明氧化镍晶粒与二氧化钛晶粒紧密接触形成p-n异质结.氧化镍颗粒的负载使复合光催化剂的吸收带边发生了明显的红移,并进入了可见光区.形成的p-n异质结促进了二氧化钛光生电子和空穴的分离,从而降低了其本征发光光强度.通过在可见光条件下对亚甲基蓝的降解研究了其光催化性能,结果表明,氧化镍颗粒的负载使二氧化钛的光催化效果在可见光区有了显著地提高,并在一定范围内随着氧化镍含量的增加光催化效果也随之提高.  相似文献   

14.
Nitrogen-doped TiO2 nanocrystalline powders were prepared by hydrolysis of tetrachloride titanium (TiCl4) in a mixed solution of ethanol and ammonium nitrate (NH4NO3) at ambient temperature and atmosphere followed by calcination at 400 ℃ for 2 h in air. FTIR spectra demonstrate that amine group in original gel is eliminated by calcination, and the TiO2 powder is liable to absorb water onto its surface and into its capillary pore. XRD and SEM results show that the average size of nanocrystalline TiO2 particles is no more than 60 nm and with increasing the calcination temperature, the size of particles increases. XPS studies indicate the nitrogen atom enters into the TiO2 lattice and occupies the position of oxygen atom. The nitrogen doping not only depresses the grain growth of TiO2 particles, but also reduces the phase transformation temperature of anatase to futile. The photocatalytic activity of the nitrogen-doped TiO2 powders has been evaluated by experiments of photocatalytic degradation aqueous methylene blue.  相似文献   

15.
Preparation of TiO2 Thin Film and Its Antibacterial Activity   总被引:2,自引:0,他引:2  
TiO2 nanometer thin films with photocatalytic antibacterial activity were prepared by the sol-gel method on fused quartz and soda lime glass precoated with a SiO2 layer. The thin films were characterized by X-ray photoelectron spectroscopy ( XPS ), scanning electron microscopy (SEM), and X- ray diffraction ( XRD ). The results show that sodium and calcium diffusion into nascent TiO2 film is effectively retarded by the SiO2 layer precoated on the soda lime glass, The antibacterial activity of the films was determined. The crystalline of TiO2 nanometer thin film has important effects on the antibacterial activity of the film.  相似文献   

16.
A novel lanthanum and sulfur co-doped TiO2 photocatalyst was synthesized by precipitation- dipping method, and characterized by X-ray diffraction(XRD), transmission electron microscopy(TEM) and UV-Vis diffuse reflectance spectroscopy. Compared with the S-doped TiO, La-doped TiO2 and the standard Degussa P25 photocatalysts, the lanthanum and sulfur co-doped TiO2 photocatalyst (the molar percentage of La is 3.0%) calcined at 450 ℃ for 2 h showed the strongest absorption for visible light and highest activities for degradation of reactive blue 19 dye in aqueous solution under visible light(λ〉400 nm) irradiation. It was also discovered that the co-doping of lanthanum and sulfur hindered the aggregation and growth of TiO2 particles, and the doping of lanthanum reduced slightly the phase transition temperature ofTiO2 from anatase to rutile.  相似文献   

17.
In this work, novel Ca CO3/Ag2CO3/Ag I/Ag plasmonic photocatalysts were successfully synthesized by a two-step in situ ion exchange process and their photocatalytic properties were studied. The morphology, crystal structure and optical properties of the as-prepared Ca CO3/Ag2CO3/Ag I/Ag nanocomposites were characterized by transmission electron microscopy(TEM), XRay diffraction(XRD), and UV-vis diffuse reflectance spectroscopy. The photocatalytic activity of the obtained nanocomposites was evaluated by the photodegradation of methyl orange(MO) under visible light irradiation. It was found that the as-prepared Ca CO3/Ag2CO3/Ag I/Ag plasmonic photocatalyst exhibits high visible light photocatalytic activity. With an optimized composition, MO dye can be decomposed by more than 94% within 15 min under visible light irradiation. Moreover, the photocatalytic stability could be greatly improved upon the addition of Na2CO3 into the photocatalytic system. From the proposed photocatalytic mechanism, the strong surface plasmon resonance effect of Ag nanoparticles and the efficient separation of photogenerated electrons and holes can effectively enhance the photocatalytic performance of the Ca CO3/Ag2CO3/ Ag I/Ag composites.  相似文献   

18.
The TiO2 films were prepared on slides by dc reactive magnetron sputtering, then the samples were annealed at 300°C, 350°C, 400°C, 450°C, 500°C and 550°C, respectively. X-ray diffraction (XRD) was used to obtain the TiO2 film crystalline structure; X-ray photoelectron spectroscopy (XPS) was used to study the film surface stoichiometries; surface morphologies were studied by scanning electron microscopy (SEM); the contact angle was tested to indicate the TiO2 film wettability; and the photocatalytic activity testing was conducted to evaluate the photocatalysis properties. The photocatalytic activity and contact angle testing results were correlated with the crystallinity, surface morphologies and surface ·OH concentration of TiO2 films. The samples with a higher polycrystalline anatase structure, rough surface and high ·OH concentration displayed a better photoinduced hydrophilicity and a stronger photocatalysis. Funded by the National “863” Project Foundation (No. 2003LG0034)  相似文献   

19.
Ag modified ZnO (Ag/ZnO) nanocrystals were prepared by a facile and low temperature wet chemical method. The phase structures, morphologies, and optical properties of the as-prepared samples were characterized by X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), the Brumauer-Emmett-Teller (BET) surface area, UV-vis diffuse reflectance spectroscopy and photoluminescence (PL) spectra, respectively. The photocatalytic performance of Ag/ZnO with diffent Ag contents was measured with the degradation of methyl orange (MO) at room temperature under UV light irradiation. The experimental results indicated that the well-crystalline ZnO nanopaticles with a size of ca. 4.5 nm exhibited a high photocatalytic activity for the degradation of MO with the apparent rate constant (k) of 1.57 ×10-2 min-1, and the photocatalytic activities of ZnO were further enhanced by modification with silver. When the Ag loading was 3mol%, Ag/ZnO showed the highest photocatalytic acitivity with a k value of 5.452×10-2 min-1, which is 3.5 and 2.5 time more than that of ZnO and commercial P25, respectively.  相似文献   

20.
为提高传统TiO2光催化剂的可见光催化活性,本文采用溶胶-凝胶法合成了Mn,N共掺杂TiO2光催化剂,改善了传统TiO2光生载流子易复合的问题;进一步采用沸石作为载体对改性后的TiO2样品进行负载,解决了传统光催化剂存在的难分离回收问题,以达到光催化剂可重复使用的目的.借助X-射线衍射仪、扫描电子显微镜、紫外分光光度计、傅立叶变换红外光谱仪等测试手段对Mn,N共掺杂TiO2光催化剂的结构、元素组成、微观形貌和光催化降解性能进行系统分析与研究.研究结果表明,沸石负载Mn,N共掺杂TiO2的样品较未改性的TiO2样品具有更高的光催化降解活性,在可见光照射下,在最优掺杂条件下获得的TiO2光催化剂在60 min内对孔雀石绿的降解率可达到97%,这主要归因于锰离子掺杂能够对TiO2光生载流子的复合产生抑制作用,促进光生电荷分离,与此同时氮元素掺杂可有效拓宽TiO2半导体光催化剂光响应范围.此外,经过5次循环使用后,对孔雀石绿的降解率没有较大程度的减弱,依然能够维持在88%以上,表明沸石负载Mn,N共掺杂TiO2的样品具有较好的光催化循环稳定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号