首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为克服矿渣水泥早期强度偏低问题,以氧化石墨烯作为纳米添加剂掺入矿渣水泥中,通过改变氧化石墨烯的掺量,以抗压强度和水化产物为研究对象,进行抗压强度测试试验,并采用X射线衍射、扫描电子显微镜、热分析和纳米压痕等测试方法对水化产物和微观结构进行表征.结果表明:氧化石墨烯可以促进矿渣水泥的水化进程,提高抗压强度,最佳掺量为0.08%;氧化石墨烯在水化过程中起到填充作用和晶核作用,从而提高抗压强度,生成更多水化产物,水化产物中高密度C—S—H凝胶比例增大.该研究结果为改善矿渣水泥早期抗压强度提供了新思路.  相似文献   

2.
通过研究C3A-CaSO4·2H2O体系在聚羧酸(PC)和萘系减水剂(FDN)存在的条件下的水化历程和水化产物结构,结合水化热、XRD、IR、SEM等检测手段分析了体系的水化行为及机理。结果表明,PC和FDN在溶解反应期均能促进水化反应的进行;随着水化反应的进行,PC能有效延缓体系水化反应的速度,第1放热峰和第2放热峰分别延迟了约5h和15h,降低体系水化放热,减缓水化产物结构的发展;PC和FDN对后期水化产物结构的发展没有影响。  相似文献   

3.
萘系高效减水剂的优化合成与改性   总被引:1,自引:1,他引:1  
研究了工业萘系高效减水剂合成工艺的优化方案,得出了各合成阶段的关键工艺参数——时间、温度和原料用量的最佳控制值。尝试了一次性投酸法和用石灰代替液碱中和等新的工艺手段,前者可以简化合成工艺,但不会影响产品质量;后者不仅可以降低成本,而且所得产品除了用作减水剂,还可兼作加气混凝土的稳泡剂。对复合改性的研究发现,“萘系-糖钙”复合外加剂,既保持了显著的减水、增强效果,又达到了控制混凝土坍落度损失的改性目的。  相似文献   

4.
研究了以聚乙二醇800、丙烯酸、顺酐、烯丙基磺酸钠、丙烯酸羟乙酯为原料合成的聚羧酸系XYZ18减水剂对水泥水化过程及微观结构的影响.结果表明,XYZ系减水剂具有缓凝特性,能减少并延缓水泥水化放热;使水泥早期微小晶体大量生长并填充孔隙,气孔细化且分布更加合理,晶体向外伸长使水泥粒子相互搭接而形成网络结构,提高了水泥石的密实性.  相似文献   

5.
以低成本的无尘纸为基底吸附氧化石墨烯,再通过水热处理得到还原氧化石墨烯,最后将苯胺原位聚合到无尘纸@还原氧化石墨烯上,制备得到无尘纸@还原氧化石墨烯/聚苯胺复合材料。运用循环伏安法、恒电流充放电法、阻抗法等测试该复合材料的电化学性能。结果表明,与无尘纸@还原氧化石墨烯相比,无尘纸@还原氧化石墨烯/聚苯胺复合材料的电化学性能有显著提高,在扫描速率为20 mV/s时,比电容达到280 F/g。基于无尘纸@还原氧化石墨烯/聚苯胺复合材料组装的电容器有良好的柔性,充电后可点亮白色LED灯。因此,具有柔性与电容性能的无尘纸@还原氧化石墨烯/聚苯胺复合材料能用于超级电容器领域。  相似文献   

6.
采用乳液复合工艺将不同尺寸的氧化石墨烯(graphene oxide, GO)与天然胶乳(natural rubber latex, NRL)复合,制备NR/GO纳米复合材料。研究了GO横向尺寸对复合材料流变性能、力学性能及形态结构的影响。研究表明由于空间运动受限作用,填充大尺寸氧化石墨烯(large size GO,LGO)的胶乳的黏度值突增至3 600 mPa·s-1,相对纯胶乳增加了30倍。仅填充1%的小尺寸氧化石墨烯(small size GO,SGO)的复合物,材料的拉伸强度与拉伸韧性分别提高了15%与25%。通过透射电子显微镜(TEM)研究,LGO在橡胶基体内构筑层-层隔离结构而SGO在橡胶基体内构筑成网络隔离结构。  相似文献   

7.
为研究氧化石墨烯(GO)掺量对水泥净浆水化和力学性能的影响,采用改进Hummers法和超声波分散法制备GO片层分散液,利用傅里叶红外光谱(FTIR)和X-射线衍射(XRD)表征GO;研究了GO掺量对水泥净浆抗压、抗折强度的影响规律,并从微观角度揭示了GO分散液对水泥净浆的调控机理。结果表明:与普通水泥净浆相比,掺入适量的GO能够促进水泥水化进程,提高水泥净浆中的化学水结合量,水化晶体互相缠绕、交织形成规整有序的多面体状微结构,使水泥净浆的早期力学性能显著提高,最佳GO掺量为水泥质量的0.03%。适量的GO能够提高水泥净浆的抗压和抗折强度,促进水泥净浆水化晶体的生长,改变晶体的尺寸和形状,实现对水泥净浆微结构的调控。  相似文献   

8.
利用微弧氧化工艺,并通过在硅酸盐系电解液中添加氧化石墨烯,在AZ31镁合金表面制备一层含碳的微弧氧化陶瓷层。运用扫描电子显微镜(SEM)及能谱仪(EDS)等测试方法研究了涂层的表面形貌、厚度等。结果表明:加入氧化石墨烯后陶瓷层致密平整,膜层缺陷得到有效改善,含碳陶瓷层厚度为4~5μm,与基体结合良好。电化学测试结果表明,加入氧化石墨烯后能有效提高AZ31镁合金的耐腐蚀性能。  相似文献   

9.
从水化热、水化产物、水泥浆体孔隙结构、微观结构变化4个方面,研究了单环芳烃型高效减水剂对水泥水化反应的影响.使用TAM Ai进行水化热测定表明,掺加单环芳烃型高效减水剂可延缓水泥初期水化和明显降低水化热,MRI分析表明同龄期的掺单环芳烃型高效减水剂水泥浆体与空白样相比孔隙总体积与总孔隙率都有增加的趋势,水泥浆体孔径分布变化不大.XRD、TG-DTA、SEM分析表明掺加单环芳烃型高效减水剂抑制水泥水化过程中水化产物Ca(OH)<,2>和水化硅酸钙产生,不影响水化产物与水化过程最终结果,掺加单环芳烃型高效减水剂使氢氧化钙、钙矾石与C-S-H等水泥水化产物细化.  相似文献   

10.
采用化学法在氧化石墨烯(GO)表面垂直生长出聚苯胺(PANI)纳米线阵列。利用SEM、FT-IR、Raman对所制备的GO/PANI复合材料的形貌及结构进行表征。该复合材料的电化学电容性能通过循环伏安(CV)、交流阻抗(EIS)和恒流充放电进行表征。研究结果表明:在0.2A/g的电流密度下,GO/PANI电极首次充放电比电容可高达469F/g,高于纯PANI电极的452F/g,复合材料的电荷传递电阻为1Ω·cm2。同时,GO/PANI的循环稳定性及倍率特性得到极大的增强。  相似文献   

11.
石墨烯对水泥净浆力学性能及微观结构的影响   总被引:1,自引:0,他引:1  
为改善石墨烯纳米材料疏水性,采用硝酸氧化和超声波法制备石墨烯分散悬浮液,考察石墨烯质量分数对水泥净浆力学性能及其微观结构的影响,探讨石墨烯的增强增韧作用机制,结果表明,水泥基复合材料的抗压、抗折强度随着石墨烯质量分数的增加呈先增大后减小的趋势,且最佳质量分数为水泥质量的0.02%.通过SEM和FT-IR对硬化水泥石的结构进行表征,发现石墨烯能够促进水泥水化产物的生长,改变水化晶体的形状、尺寸,使其有形成完整、簇状的趋势,但并未与水泥发生化学反应,改变其生成物类型.  相似文献   

12.
The adsorption amount, ζ-potential of cement particles and fluidity of cement paste were tested to research the competitive adsorption between naphthalene superplasticizer(FDN) and STPP. The experimental results showed that the presence of STPP could significantly improve the fluidity of cement paste and reduce the fluidity loss with FDN. There existed a competitive adsorption between STPP and FDN. STPP and calcium ions formed complexes; they preferentially adsorbed onto surface of cement particles and preempt adsorption points of FDN; and it reduced adsorption amount of FDN. In the absence of STPP, saturation adsorption amount of FDN was 5.93 mg/g; but when the dosage of STPP was 0.1%, it reduced to 4.3 mg/g(about 72.5%). The adsorption amount of FDN was reduced by STPP, but ζ-potential of cement particles enhanced and fluidity of cement paste increased because of strong negative charge effect of the complexes. Adsorption of the complexes would delay Ca2+ into liquid and inhibit formation of active adsorption points. Then, content of FDN in liquid increased with the addition of STPP and ζ-potential of cement particles became stable. In this way, fluidity loss of cement paste reduced.  相似文献   

13.
用直接测温法及X射线衍射技术,系统研究了葡萄糖酸钠与萘系、氨基磺酸盐系及聚羧酸盐系3种高效减水剂复合使用对水泥水化热、水化温峰、温峰出现时间及不同水化龄期Ca(OH)2和钙矾石(AFt)生成量等方面的影响.结果表明:与糖钙和三聚磷酸钠相比,葡萄糖酸钠及其与高效减水剂复合对水泥水化历程的影响规律明显不同.单掺葡萄糖酸钠使水泥水化第2放热峰出现时间延迟,但温峰值及水化热与空白样基本持平,温峰时的Ca(OH)2生成量增大.复合使用葡萄糖酸钠与高效减水剂时,与不同品种高效减水剂复合使用对水泥水化历程的影响不同.  相似文献   

14.
The effects of two types of superplasticizers on the properties of CSA cement pastes during early hydration were studied. The influences of two types of superplasticizers on the properties of cement pastes, including the normal consistency, setting time, fl uidity, and compressive strength, were investigated by using various methods. The hydration products of the cement pastes cured for 1 day and 3 days were studied by X-ray diffraction(XRD) and scanning electron microscopy(SEM). The results show that the PCE type superplasticizer retards the early age hydration while the FDN type superplasticizer accelerates the early age hydration of the CSA cement. Both types of superplasticizers have no infl uence on the further hydration of CSA cement, confi rmed by the calorimeter tests as well. The ultrasonic pulse velocity measurements were used to probe the influence of two types of superplasticizers on the hydration of CSA cement pastes at a high water-cement ratio(0.45). The results show that the PCE type superplasticizer retards the early age hydration of the CSA cement while the FDN type superplasticizer has little infl uence on the early age hydration of the CSA cement.  相似文献   

15.
Red mud was activated to be a mineral admixture for Portland cement by means of heating at different elevated temperatures from 400 °C to 700 °C. Results show that heating was effective, among which thermal activation of red mud at 600 °C was most effective. Chemical analysis suggested that cement added with 600 °C thermally activated red mud yielded more calcium ion during the early stage of hydration and less at later stage in liquid phase of cement water suspension system, more combined water and less calcium hydroxide in its hardened cement paste. MIP measurement and SEM observation proved that the hardened cement paste had a similar total porosity and a less portion of large size pores hence a denser microstructure compared with that added with original red mud. Funded by the National 973 Program of China (No. 2001CB610703)  相似文献   

16.
利用竹纤维制备了水泥基复合材料,采用正交试验法得到了纤维掺量、纤维长度、减水剂和水灰比四个因素的最佳试验条件.在此基础上测试了该复合材料在不同龄期抗压强度和抗折强度.针对竹纤维的机械性能在碱性水泥浆中会逐渐恶化的缺点,对竹纤维表面预涂了乳液并进行了耐久性对比测试.结果表明,加入预处理的竹纤维制备出的水泥基复合材料的力学性能和耐久性得到了显著改善.  相似文献   

17.
为探究超轻质水泥基复合材料(ultra lightweight cement composite,ULCC)的基本力学性能及应力-应变曲线本构关系.以粉煤灰空心微珠为唯一轻质微集料,以水泥和硅灰为胶凝材料,以高效减水剂和减缩剂为外加剂,配制了钢纤维体积掺量为1%,表观密度介于1 250~1 550 kg/m3,轴心抗压强度介于47.9~70.0 MPa的4种不同密度等级的ULCC.对其分别进行单轴抗压和单轴抗拉试验,分别研究了ULCC的轴心抗压和轴心抗拉力学性能,测得了ULCC材料轴心抗压强度、轴心抗拉强度、弹性模量、泊松比及单轴抗压和单轴抗拉应力-应变曲线.结果表明:ULCC的抗压强度、抗拉强度和弹性模量均随密度的增加而增加; ULCC的轴心抗压强度和弹性模量与密度呈较强线性相关性.轴心抗拉试验结果表明ULCC抗拉应力-应变曲线关系呈现明显的峰后平台段,ULCC材料具有良好的拉伸变形能力.根据试验测得的ULCC单轴抗压和单轴抗拉应力-应变全曲线,建立了ULCC单轴抗压和单轴抗拉的分段式应力-应变本构方程.研究成果可为ULCC结构的设计和非线性有限元计算提供理论依据.  相似文献   

18.
石灰石粉具有水化活性,能与硅酸盐水泥中的C3A、铝酸盐水泥中的CA、CA2等铝酸盐矿物发生反应,水化产物为水化碳铝酸钙。利用微量热仪法、胶砂强度和X射线衍射(XRD),研究不同比例的石灰石粉铝酸盐水泥复合体系的水化反应,结果表明:石灰石粉会加快铝酸盐水泥的水化进程,水化过程诱导期缩短,放热速率峰值下降;复合体系中石灰石粉占比越高,早期水化反应速率越快,但水化反应放热量越低;相对而言,复合体系中石灰石粉掺量为20%时石灰石粉参与反应程度最高,且掺量为20%时石灰石粉对复合体系强度有显著贡献。随复合体系中石灰石粉比例增加,铝酸盐水泥水化产物越来越不明显;石灰石粉掺量为20%~40%时,水化碳铝酸钙XRD特征峰相对最明显,复合体系中石灰石粉与铝酸盐水泥存在一个最佳的比例范围。研究表明,石灰石粉与铝酸盐水泥间会发生明显的水化反应,石灰石粉与铝酸盐水泥复合有望制得一种新型胶凝材料。  相似文献   

19.
单向分布钢纤维增强水泥浆的制备与性能研究   总被引:2,自引:0,他引:2  
研究了制备单向分布钢纤维增强水泥浆的方法及其性能.在成型阶段施加外部磁场,钢纤维可被磁化并受外部磁场作用,使水泥浆拌合物中的钢纤维形成定向分布,制备出单向分布钢纤维增强水泥浆.研究表明,这种方法制备的单向分布钢纤维增强水泥浆中,90%左右的钢纤维方向与磁场方向一致或接近;钢纤维方向系数达到0.95或更高;与乱向分布钢纤维增强水泥浆相比,单向分布钢纤维增强水泥浆抗折强度显著提高;抗折强度相同时,单向分布技术可节省钢纤维25%以上.  相似文献   

20.
以丙烯酸(AA)、异丁烯醇聚氧乙烯醚(HPEG)、甲基丙烯磺酸钠(SMAS)等为单体,分别采用丙烯酰胺(AM)、羟甲基丙烯酰胺(HAM)取代部分丙烯酸,通过水溶液聚合法制备出具有早强功能的聚羧酸系减水剂,并探讨了合成条件对水泥净浆流动度的影响.研究结果表明:在单体摩尔比n(AA)∶n(HPEG)∶n(SMAS)=4∶1∶0.36、反应温度为80℃、过硫酸铵(APS)用量为单体总质量的3%时,制备出的聚羧酸减水剂的分散性能较优.当AM取代为18%时,对提高混凝土的早期强度效果较佳,AM比HAM具有更好的早强效果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号