首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
为了检验同步半硝化-厌氧氨氧化颗粒污泥工艺(simultaneous partial nitritation/Anammox with granular sludge,SPNAGS)对低氨氮污水的生物脱氮效果,开展了长期的小试试验研究.结果显示,在污水氨氮浓度从200mg/L降到20~50 mg/L时,系统中的颗粒污泥发生解体,难以保持颗粒状,且污泥颜色由原来的红棕色变为灰黄色,系统仍然保持很高的氨氮去除率(95%),但总氮的去除率却逐渐降低,最后仅有20%左右,约80%的氨氮转化为硝酸盐.因此,本研究进一步证明了该工艺在应用于低氨氮浓度污水生物脱氮时,系统内亚硝酸盐氧化细菌(nitrite-oxidizing bacteria,NOB)的控制既是关键,也是挑战.  相似文献   

2.
氨氮对内循环生物流化床亚硝化过程影响   总被引:2,自引:0,他引:2  
为实现内循环生物流化床(ITFB)短程脱氮处理高氨氮废水,在小试ITFB反应器内考察了氨氮浓度对生物膜亚硝化特性的影响.通过5个月的连续试验,研究了ITFB反应器历经启动培养、短暂亚硝化、硝化系统破坏、硝化系统恢复、完全硝化五个过程中,氨氮、硝酸盐氮和亚硝酸盐氮的转化规律及游离氨毒性作用对短程硝化过程的影响.试验结果表明:反应器启动初期出现了短暂亚硝化,平均亚硝化率为79%;在进水氨氮浓度增加到300 mg/L时,系统再次实现了亚硝化,平均亚硝化率达81%,但由于游离氨浓度的影响使得系统硝化能力受到严重影响,系统氨氮去除率降低至22%;系统恢复后,亚硝化现象不明显.反应器内游离氨浓度随进水氨氮浓度升高而增加至8 mg/L时,系统内硝化细菌和亚硝化细菌活性均受到抑制.通过提高进水氨氮浓度来实现系统短程脱氮过程稳定运行的可逆性较差.  相似文献   

3.
碱度对常低温处理生活污水亚硝化的影响   总被引:1,自引:1,他引:0  
为探究碱度对亚硝化过程的影响及通过碱度控制亚硝化出水比例的可行性,在序批式反应器(SBR)内快速启动亚硝化后考察不同进水碱度和氨氮比下的氨氮转化率、氨氮氧化速率及微生物活性.结果表明,硝化污泥经高氨氮预驯化可以实现亚硝化的快速启动,亚氮积累率维持在96%以上.碱度不足时,氨氮转化率与进水碱度和氨氮比成线性关系.周期试验表明,碱度可以指示亚氮质量浓度,碱度小于50 mg/L将导致氨氮氧化停止,比无机碳源质量摩尔浓度小于3.0 mmol·g-1将导致微生物数量及活性降低.实际运行中,可以通过碱度有效控制出水亚硝化比例.  相似文献   

4.
进水氨氮浓度对两种污泥系统CANON工艺的冲击影响   总被引:1,自引:0,他引:1  
为考察氨氮质量浓度对不同污泥系统的CANON工艺的冲击影响,在温度(30±1)℃、pH 7~8的条件下,研究了两个稳定运行的高氨氮废水颗粒污泥系统和颗粒絮体混合系统的CANON工艺,在进水氨氮质量浓度突然降低后的脱氮性能.颗粒污泥系统在FA质量浓度为34、20和10 mg/L条件下,CANON工艺短程硝化反应运行稳定,硝态氮生成量与氨氮消耗量的比值小于0.11;颗粒和絮体混合的污泥系统在FA质量浓度为33 mg/L条件下短程硝化运行稳定,FA质量浓度降低至16 mg/L时硝态氮生成量与氨氮消耗量的比值接近0.11,系统内NOB活性得到恢复,在FA质量浓度为7 mg/L条件下系统内NOB活性得到完全恢复,硝态氮生成量与氨氮消耗量的比值升高至0.37.研究结果表明,颗粒污泥系统相比颗粒和絮体混合的污泥系统具有更好的抗冲击能力,较短的沉淀时间是维持颗粒污泥CANON工艺稳定运行的关键;短程硝化被破坏后,再次增加进水氨氮的质量浓度可恢复对NOB活性的抑制.污泥粒径的分布可较为直观地反映系统的稳定性,可参考系统内污泥粒径的分布规律判断CANON工艺的脱氮性能.定量PCR表明,随着进水氨氮质量浓度的突然降低,ANAMMOX丰度有明显的减少,NOB丰度有明显的增长,颗粒出现了解体的现象.  相似文献   

5.
温度和游离氨对颗粒与絮状污泥硝化性能影响的对比研究   总被引:1,自引:0,他引:1  
采用批式试验,考察了不同温度(10、15、20、25、30℃)及室温下不同游离氨质量浓度(1.76、8.23、14.68、26.52、46.23、90.00 mg/L)对好氧颗粒污泥和絮状污泥硝化作用的影响.结果表明,随着温度的升高,好氧颗粒污泥和絮状污泥的比氨氧化速率均增大,而在相同温度下,好氧颗粒污泥的硝化能力更强,比氨氧化速率分别是絮状污泥的4.5倍(10℃)和2.5倍(30℃).游离氨的试验表明,在游离氨质量浓度为90.00 mg/L时,游离氨对颗粒污泥硝化性能无明显抑制作用,但对絮状污泥抑制作用明显,比氨氧化速率比上一梯度减小了约43%,原因是氨氧化菌均布于絮状污泥中,与氨氮接触充分,易受到抑制,而好氧颗粒污泥的表面生物特征影响氨氮传质速率,使其具有抗高氨氮负荷冲击的优势,可见颗粒污泥在维持生物脱氮系统稳定方面具有较大潜力.  相似文献   

6.
SBR工艺硝化脱氮过程研究   总被引:2,自引:0,他引:2  
SBR法脱氮,硝化过程中碳氮比和温度对氨态、硝态、亚硝态氮的平衡和转化关系极其重要.人工配制固定浓度碳源、不同浓度水平氨氮废水的SBR工艺硝化实验表明:氨氮降解明显地分为两个阶段;进水氨氮浓度越高,氨氮自养硝化阶段降解速率越快,亚硝酸盐氮生成速率也越快.对不同温度硝化过程中亚硝酸盐氮进行研究,结果表明,在中温(20~30℃)下,通过调整pH值,亚硝酸盐氮不仅可以实现累积,而且温度越高,亚硝酸盐氮累积速率越快.  相似文献   

7.
通过改变反应器曝气量、氨氮浓度与适时排泥可缩短自养短程硝化时间.利用微电极监测技术,测定反应器内好氧活性污泥絮体微观环境物质浓度变化规律.结果表明,逐步降低曝气量、增加氨氮浓度和适时排泥可以提高系统的NO-2-N积累浓度:在NH+4-N浓度由200 mgN/L提高到400 mgN/L,曝气量由35 L/H降到25 L/H,污泥浓度稳定在2 100~2 400 mg/L,历时23 dNO-2-N积累率由3.4%提高到91.86%.经过三个阶段,实现了全程硝化到短程硝化的转换过程;通过对污泥基团物质迁移转化的微生态监测发现,NO-2-N生成过程主要在污泥基团0~500μm内进行.试验条件下絮体内NO-2-N总产量从1.48μmol(cm2.h)-1增加到3.8μmol(cm2.h)-1,NO-3-N总产量从2.6μmol(cm2.h)-1降低到0.95μmol(cm2.h)-1;随着曝气量降低和氨氮浓度的提升,NO-2-N生成区域向污泥絮体表面迁移,亚硝氮氧化区域主要存在于氨氮氧化区域絮体更深处部位.测试发现物质在污泥界面迁移过程中明显衰减,表明污泥结构过于密实会影响物质迁移和净化效率.  相似文献   

8.
低氧MBR中有机物对脱氮过程的影响   总被引:3,自引:0,他引:3  
研究了低氧膜生物反应器(MBR)中有机物对脱氮过程的影响.在进水COD为360,220,140mg/L情况下,生物反应器系统的总氮去除率分别为89%,72%,22%,可以看出有机物质量浓度的降低不利于同步反硝化脱氮;对异养菌的活性产生危害,但却利于硝化菌.这削弱了有机物对硝化作用的抑制影响,使系统中活性污泥具有硝化过程和氨氮同化过程同步进行的特性,在理论上有利于提高低氧脱氮的效率和降低系统的污泥产率.  相似文献   

9.
微氧条件下培养AOB-Anammox颗粒污泥   总被引:3,自引:0,他引:3  
采用絮状硝化污泥和厌氧氨氧化颗粒污泥为接种污泥,利用膨胀颗粒污泥床反应器,在微氧曝气条件下,培养自养脱氮(氨氧化AOB-厌氧氨氧化Anammox)颗粒污泥.在无机高氨氮进水条件下,维持反应器运行58 d,成功培养出AOB-Anammox颗粒污泥.在模拟生活污水条件下,颗粒污泥脱氮效果稳定,氨氮和总氮去除率最高可达92.3%、71.2%,平均总氮去除负荷达1.237 kg·N/(m~3·d).SEM及FISH结果表明:AOB-Anammox颗粒污泥微生物组成以2种菌群为主,AOB细菌密集排布于颗粒污泥表面,Anammox细菌均匀分布在颗粒污泥内部.  相似文献   

10.
AUSB中置曝气启动连续流全程自养脱氮工艺   总被引:2,自引:0,他引:2  
为优化连续流全程自养脱氮工艺的启动,在常温((25±1)℃)下,于中置、底部曝气的两组AUSB(1#、2#)中比较连续流CANON工艺的启动过程,及不同氮负荷(NLR,R_(NL))下脱氮性能的差异.结果表明:1#、2#分别于第55天、70天成功启动低氨氮(90 mg/L)CANON工艺;在逐步提高NLR进程中,二者均在HRT=6 h工况下脱氮负荷(NRR,R_(NR))达到该阶段最高水平,分别为0.280、0.256 kg/(m~3·d);实验后期,1#保持高效的脱氮状态,特征值(Δρ(TN)/Δρ(NO_3~--N))稳定在7.83,而2#运行125 d后特征值降至7.49,NOB活性增强.中置曝气AUSB结合同步亚硝化/厌氧氨氧化(SNA)和交替亚硝化/厌氧氨氧化(ANA)双重路径完成自养脱氮,得益于较高的好氧氨氧化菌(AOB)和厌氧氨氧化菌(An AOB)活性,及对亚硝酸盐氧化菌(NOB)的有效抑制,实现了较高的总氮去除率,达74.98%(第140天).AUSB中置曝气可缩短连续流CANON工艺的启动时间,并实现长期稳定的自养脱氮.  相似文献   

11.
半短程硝化-厌氧氨氧化处理污泥消化液的脱氮研究   总被引:6,自引:0,他引:6  
采用实验室规模的半短程硝化-厌氧氨氧化联合工艺,研究了对高氨氮、低ρ(C)/ρ(N)污泥消化液的处理能力.结果表明,在A/O反应器中,短程硝化在温度9~20℃、平均ρDO=5.4 mg/L、SRT值为30 d左右时,进水氨氮负荷0.64 kg/(m3.d)的条件下,经过29 d得以实现,通过控制游离氨ρFA>4 mg/L时,此后,从30—96 d,出水亚硝氮累积率维持在70%左右;短程硝化实现之后,进而实现了半短程硝化,出水氨氮与亚硝氮浓度比维持在1∶1.32左右;采用UASB反应器,接种由好氧颗粒污泥、厌氧颗粒污泥、氧化沟活性污泥及短程硝化活性污泥组成的混合污泥,在避光、厌氧、(30±0.2)℃、pH=7.3~7.9条件下,以污泥消化液经短程硝化处理后的出水为进水,初期进水氨氮、亚硝氮容积负荷分别为0.07、0.10kg/(m3.d),经过24d运行,氨氮和亚硝氮开始出现同步去除现象,195 d时总氮去除负荷达1.03 kg/(m3.d);待半短程硝化运行稳定和厌氧氨氧化反应成功启动后,将二者联立并运行了105 d,最终总氮去除率达到70%.  相似文献   

12.
以污水处理厂氧化沟污泥为泥种,采用进水低碳高磷、两阶段的运行方式进行反硝化聚磷污泥的培养,约100 d成功驯化培养出反硝化聚磷污泥.第1阶段以厌氧/好氧的运行方式驯化好氧聚磷污泥,运行约40 d,最大释磷量、最大聚磷量和最大除磷量分别可达到77.2、89.4、25.0 mg/L,表现出较强的聚磷能力;第2阶段采用厌氧/缺氧/好氧的运行方式驯化反硝化聚磷污泥,运行60 d,缺氧聚磷量占总聚磷量的百分比呈上升趋势.硝化污泥经过100 d的驯化可去除约50 mg/L的氨氮,硝化率基本稳定在98.5%以上.硝化速率本符合零级动力学方程,比硝化速率常数为0.0024h-1;好氧聚磷速率和缺氧聚磷速率基本符合一级动力学方程,速率常数分别是0.377、0.740 g/(L·h-1).利用驯化培养成功的反硝化聚磷污泥和硝化污泥进行了A2N-SBR试验,结果表明:在进水COD、氨氮和磷分别为188.0、54.8、7.25 mg/L时,去除率分别为93.5%、76.7%和94.1%,驯化培养的双污泥具有良好的脱氮除磷效果.  相似文献   

13.
为了研究低溶解氧微膨胀前后污泥硝化活性的变化,采用SBR反应器,平均DO浓度为0.6mg/L-0.9mg/L,测定污泥微膨胀前后污泥氧消耗速率曲线。结果表明:发生污泥微膨胀后,活性污泥对COD的去除能力有较大的提高,而对氨氮去除能力却有一定的下降。污泥微膨胀前后的氧消耗速率曲线显示,微膨胀前活性污泥总活性为67.72mgO2/gVSS·h,其中硝化活性为43.12mgO2/gVSS·h,占其总活性的63.67%;而微膨胀后活性污泥总活性为90.49mgO2/gVSS·h,其中硝化活性为23.98mgO2/gVSS·h,占其总活性的26.51%。低DO成为微生物生长的限制性基质,污泥微膨胀的状态下,活性污泥中丝状菌成为优势菌种,而硝化细菌成为非优势菌种,污泥的总硝化活性降低。  相似文献   

14.
针对晚期垃圾渗滤液实现深度除碳脱氮,采用上流式厌氧污泥床(upflow anaerobic sludge blanket,UASB)-缺氧/好氧反应器(anoxic/aerobic reactor,A/O)-厌氧氨氧化反应器(anaerobic sequencing batch reactor,ASBR)组合工艺,以短程硝化-厌氧氨氧化耦合反应为依托,通过UASB实现有机物的大部分降解,在A/O中实现短程硝化,在ASBR中通过厌氧氨氧化深度脱氮.研究结果表明:当进水ρ(CODcr)、ρ(NH_4~+-N)和ρ(TN)分别为2 220 mg/L、1 400~1 450 mg/L和1 450~1 500 mg/L;最终出水分别为98、7、25 mg/L,实现了分别为95.6%、98.3%和99.5%的高去除率.故该工艺无须投加任何外碳源,最终实现化学需氧量(chemical oxygen demand,COD)、氨氮(NH_4~+-N)和总氮(total nitrogen,TN)的高效、深度去除.  相似文献   

15.
采用序批式生物反应器(SBR)处理模拟含盐废水,利用醋酸钠作为碳源,当DO为0.3-0.5 mg/L、温度为35±1℃、pH为7.5-8.5时,考察NaCl和KCl两种盐度对SBR工艺氨氮去除效果的影响。结果表明,当SBR反应器中无盐度添加的废水时,通过30 d的驯化,活性污泥系统氨氮去除率稳定在90%以上;SBR反应器中添加NaCl和KCl含盐废水,当NaCl盐度增加至15 g/L时,出水氨氮高于10mg/L;当KCl盐度增加至20 g/L时,出水氨氮低于5 mg/L。当NaCl盐度为10 g/L时,SBR反应器达到90%以上的氨氮去除率所需的驯化时间为3 d,相同KCl盐度下SBR反应器达到90%以上的氨氮去除率需要2 d的驯化时间。  相似文献   

16.
不同SRT选择性排泥实现除磷亚硝化试验研究   总被引:1,自引:0,他引:1  
常温条件下(20~25℃),采用序批式反应器(SBR)研究了2种排泥方式在3个不同梯度污泥龄(40、20、10 d)下生活污水的除磷亚硝化效果.结果表明:整个过程亚硝化率都在95%以上,随着污泥龄(SRT)的减小,系统除磷能力逐渐提高,氨氮去除容积负荷逐渐降低;在相同SRT条件下,排污泥床表层污泥比排底层污泥能获得更好的除磷效果和更高的氨氮去除容积负荷.在长期运行中发现,采用排污泥床表层污泥的方式,控制污泥龄为20 d,总磷去除率为95.92%~97.12%,出水总磷质量浓度为0.1~0.4 mg/L,氨氮去除容积负荷为0.12 kg/(m3·d),出水亚硝酸盐氮和氨氮的比值约为1∶1,可以实现常温生活污水SBR同步除磷亚硝化的稳定运行,为后续的厌氧氨氧化提供了合适的进水.  相似文献   

17.
针对运河常州段微污染水源,进行了高锰酸钾-沸石联用预处理运河水中的COD和氨氮试验研究。通过试验得到:在投加聚合硫酸铁20 mg/L,高锰酸钾1.0 mg/L,沸石300 mg/L时,运河水中的COD的含量从113.6 mg/L下降到11.4 mg/L;氨氮含量从2.55 mg/L下降到0.43 mg/L。去除率分别达到90.0%和83.1%,使有机物和氨氮的含量达到Ⅱ类水源水质标准。  相似文献   

18.
针对运河常州段微污染水源,进行了高锰酸钾-沸石联用预处理运河水中的COD和氨氮试验研究。通过试验得到:在投加聚合硫酸铁20mg/L,高锰酸钾1.0mg/L,沸石300mg/L时,运河水中的COD的含量从113.6mg/L下降到11.4mg/L;氨氮含量从2.55mg/L下降到0.43mg/L。去除率分别达到90.0%和83.1%,使有机物和氨氮的含量达到Ⅱ类水源水质标准。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号