首页 | 本学科首页   官方微博 | 高级检索  
检索     
共有20条相似文献,以下是第1-20项 搜索用时 562 毫秒

1.  支持向量机在模式识别中的应用  被引次数:4
   沈明华  肖立  王飞行《电讯技术》,2006年第46卷第4期
   针对传统神经网络存在网络结构难于确定、过学习以及局部极小等问题,研究了基于支持向量机(SVM)的模式识别问题。通过对棋盘这种典型非线性二值问题的分类研究,分析了支持向量机的分类与泛化能力。支持向量机在分类和泛化能力方面远远优于传统神经网络。最后将支持向量机用于对两类飞机目标的分类识别,通过多组蒙特卡罗试验,获得了较好的识别结果。支持向量机在目标识别中有巨大潜力和广阔前景。    

2.  一种改进的支持向量机及其在癌症诊断中的应用  
   王晶  卫金茂《计算机应用》,2006年第26卷第2期
   为了改善支持向量机的泛化能力,提出了一种改进的支持向量机——SUB SVM,它把对所有训练数据训练得到的主支持向量再次训练,用得到的次支持向量构造SVM非线性分类器,将该算法应用在癌症诊断中,取得了比传统SVM分类器更高的识别率。    

3.  基于时空局部特征融合的人体行为识别  
   《武汉大学学报(工学版)》,2014年第4期
   为了实现对公共区域等特定场所下的人体正常行走、跑动、挥拳、双手挥舞等人体行为的识别,提出了一种基于时空局部特征融合的人体行为识别方法.首先,对各种目标行为建立样本库,将不同类别的目标行为样本作为先验知识,以此训练支持向量机;然后通过高斯混合模型来检测运动前景,接着提取运动目标的区域特征和运动特征,通过K-L离散变换对两者进行特征融合;最后结合支持向量机具有全局最优性和较好泛化能力的特点,进行小样本的多目标行为分类识别,并和BP神经网络的识别效果进行比较.实验结果表明,SVM的识别率优于BP神经网络,其平均识别率可达96%.    

4.  改进的决策树支持向量机地下水水质评价  
   陈海洋  滕彦国  王金生《计算机应用》,2011年第31卷第3期
   基于结构风险最小原理的支持向量机(SVM)具有较强的学习泛化能力和良好的分类性能,能用来解决少样本学习的二类模式识别问题。针对具备多级类别的地下水水质评价问题,可以采用决策树SVM分类方法,通过对多类别水质标准的重新组合以构建类似于决策树的多个子分类器来实现。但基于决策树SVM分类过程中常常会出现由于正负类训练样本数据不均一导致的局部识别误差。基于二叉树原理提出了一种改进决策树SVM模型,通过加密数据插值和二叉分类有效避免正负类训练样本数据不均一的问题,针对地下水水质评价特点,增加了第5个子分类器以精确识别Ⅱ类水质和Ⅲ类水质。实验结果表明,改进的决策树SVM分类模型评价结果稳定。    

5.  支持向量机的发展与应用  
   王莉  林锦国《石油化工自动化》,2006年第3期
   基于统计学习理论的支持向量机(SVM)是一种新型的机器学习方法,描述了SVM在模式识别和回归估计中的基本思想。在大训练样本情况下,用传统的方法求解SVM问题计算复杂,针对该问题探讨了一系列的SVM训练算法,并对其进行了比较。SVM由于其良好的泛化能力和全局最优性能.在模式识别、数据挖掘、非线性系统建模和控制等领域中展现出广泛的应用前景。    

6.  基于支持向量机的高分辨距离像分类法  
   徐培  章毓晋《微计算机信息》,2008年第24卷第10期
   雷达高分辨距离像(HRRP)识别,是军事目标识别的一个重要手段.支持向量机(SVM)具有良好的泛化能力,适用于小样本学习问题.本文针对3类飞机目标的HRRP数据,构造了SVM分类器,设计了2组实验以比较SVM与最大相关系数法(MCM)的泛化能力、识别速度和抗噪能力.实验结果表明,SVM在军事目标HRRP分类方面具有良好的应用前景.    

7.  支持向量机及其在复杂水淹层识别中的应用  被引次数:11
   李盼池  许少华《计算机应用》,2004年第24卷第9期
   研究了基于结构风险最小化原理的支持向量机方法对模式类的识别能力,构造了可用于多个模式类识别的级连式SVM模型。该模型易于实现,且能够找到模式间的最优分类超平面,泛化能力较高。支持向量机用于模式识别不存在局部极小值问题,且不需网络迭代训练,求解速度明显高于神经网络。该模型采用两种核函数,将SVM用于油藏测井解释中水淹层的识别以提取测井曲线与水淹级别之间的映射关系,从而实现模糊性油藏测井解释中水淹层的识别。实验结果表明,此方法对解决水淹层识别问题具有良好的适应性和实用性。    

8.  基于SVM的人脸检测研究  
   胡萍萍《电脑编程技巧与维护》,2011年第1卷第16期
   支持向量机(SVM)是在统计学习理论基础上发展起来的一种新的机器学习算法。依据SVM良好识别和泛化能力,实现了一种基于支持向量机的图像人脸识别方法。利用Opencv提取样本类的低层特征,训练具有径向基核函数的SVM分类器,在VS2008和Qt平台下实现识别软件开发。运行结果表明,软件具有良好的图像人脸检测能力。    

9.  基于混合核函数的脱机手写汉字识别  
   张凯  王建平《计算机与数字工程》,2007年第35卷第12期
   脱机手写汉字识别是模式识别领域一项难题.支持向量机(SVM)也是近年来发展起来并成功的用于模式分类的新型机器学习方法,由训练集和核函数完全刻画.其中核函数的选择决定了支持向量机的性能,由于普通核函数各有其利弊,为了得到学习能力和泛化性能都很强的核函数来吸收手写汉字的变形,采用混合核函数,并运用于手写体汉字分类.实验结果表明混合核函数对手写体汉字的分类识别率要高于由普通单个核函数构造的支持向量机.    

10.  基于主动学习的支持向量机算法  
   白宁《现代电子技术》,2013年第24期
   针对支持向量机(svM)模型不能有效处理海量数据挖掘的问题,提出一种改进的基于主动学习的支持向量机(AL_SVM)方法。该方法首先将训练集随机划分为多个独立同分布的子集,并选择其中一个子集作为初始训练集来训练SVM得到初始分类器和支持向量集,然后根据已经得到的分类器信息在剩余样本集中选择对于分类器改进作用最大的有价值样本。并与已得到的支持向量集合并构成新训练集,以更新分类器,从而在保留重要支持向量信息的前提下,去除大量不重要的支持向量,一定程度上避免了过学习问题,提高了学习效率。实验表明,AL_SVM方法能够在保持学习器泛化能力的同时提高其学习效率。    

11.  ELMs和SVMs在多分类问题上的泛化性能比较  
   《计算机应用与软件》,2019年第10期
   多分类问题是机器学习、数据挖掘领域的重要研究内容。在文本分类、语音识别、图像识别、基因检测等方面有广泛的应用。通过在UCI数据集对极限学习机算法ELMs(ELM,KELM)和支持向量机算法SVMs(SVM,LSSVM)在多分类问题上的表现进行详细比较,得出以下结论:ELMs相较于SVM在多分类问题上有更高的分类准确率,而且随着分类数目的增加,ELMs的泛化能力相较于SVM提高越多,但是ELMs对于LSSVM并没有得到上述结论;ELMs相较于SVMs对数据的类别数目不敏感,分类准确率随类别数目增加下降不明显;ELMs相较于SVMs在多分类问题上所需计算代价更小,且拥有更快的学习和训练速度,适用于多分类问题。    

12.  基于KPCA和SVM的火箭发动机试验台故障诊断方法  被引次数:2
   朱宁  冯志刚  王祁《哈尔滨工业大学学报》,2009年第41卷第3期
   为了解决液体火箭发动机试验台的故障诊断问题,提出了一种基于核主元分析(KPCA)特征提取和支持向量多分类机(SVM)的故障诊断方法,该方法首先利用核主元分析对试验台标准故障样本进行特征提取,通过特征分析,建立适合于试验台故障状态识别的层次多分类支持向量机,并对其进行训练,然后将试验数据在主元上投影,输入到训练好的支持向量多分类器,对试验台故障状态进行识别.该方法充分利用了核主元分析强大的非线性特征提取能力和支持向量分类机良好的小样本泛化特性,解决了试验台故障诊断中的小样本、非线性模式识别问题.对试验台的试验结果表明,该方法是有效的、可行的.    

13.  用纠错编码改进的M-ary支持向量机多类分类算法  
   包健  刘然《计算机应用》,2012年第32卷第3期
   针对M-ary支持向量机(SVM)多类分类算法结构简单,但泛化能力较弱的特点,提出了与纠错编码理论相结合的改进的M-ary SVM算法.首先,将原始类别信息编码作为信息码;然后结合纠错编码理论及期望的纠错能力,产生一定程度上性能最佳的编码,作为分类器训练的依据;最后,对于识别阶段输出编码中的错误分类利用检错纠错原理进行校正.实验结果表明,改进的算法通过引入尽可能少的冗余子分类器增强了标准M-ary SVM多类分类算法的性能.    

14.  基于最小二乘支持向量机的网页主题语义分类的研究  被引次数:1
   樊中华  侯占斌  张晨星  马骁《计算机应用与软件》,2009年第26卷第12期
   提出了对网页主题进行语义扩展的方法,利用最小二乘支持向量机LSSVM(least squares support vector machines)来代替传统的支持向量机SVM(support vector machine)的分类技术。在建立LSSVM模型的多类别分类算法基础上,将其应用到网页主题语义分类。实验表明,最小二乘支持向量机学习速度快,在小样本情况下具有良好的非线性建模和泛化能力,对网页主题语义分类具有很好的效果。    

15.  基于支持向量机的分类预测算法研究  
   陈凤娟《计算机与网络》,2009年第19期
   分类预测是数据挖掘、机器学习和模式识别等很多领域共同关注的问题,已经存在了许多有效的分类算法,但这些算法还不能解决所有的问题。支持向量机作为一种新的分类预测工具,能根据有限样本信息在模型的复杂性和学习能力间取得平衡,并能获得更好的泛化能力。SMO算法是支持向量机中使用最多的算法,它体现了支持向量机的优点,同时也能处理大规模训练集。    

16.  矿井涌水水源识别的MMH支持向量机模型  被引次数:4
   闫志刚  白海波《岩石力学与工程学报》,2009年第28卷第2期
    提出一种新的多水源判别的H支持向量机模型。推导H支持向量机的理论推广误差公式,发现确保高优先级节点的推广性能是提高H支持向量机性能的有效途径;设计基于SVM最大间隔逐层分类、最小间隔逐层聚类构造H支持向量机的新方法,以各支持向量机节点的分类间隔为分类、聚类指标,通过TopDown,BottomUp两种方式混合构造H支持向量机,即MMH支持向量机。实验效果表明,MMH支持向量机结构简单、泛化能力强,不仅能正确区分各类水源,而且其层次结构能很好地反映各水源的层次关系。判别函数的法向量还可以指示各含水层水质化验指标的权重,为矿井涌水水源识别提供了新的科学方法。    

17.  基于纹理提取和SVM技术的自动木材缺陷识别  
   张召  业宁  业巧林《计算机工程与应用》,2009年第45卷第23期
   支持向量机(SVM)是一种新的模式识别方法,有较好的泛化能力和推广能力。研究了基于纹理提取和支持向量机的自动木材表面缺陷的识别问题,借助LBP纹理特征提取技术实现对木材图像数据降维处理,并研究了木材表面不同类型缺陷的分布规律。利用支持向量机分类算法对木材表面有无缺陷进行了快速准确的自动识别,实现了木材表面缺陷的自动定位。多次交叉实验表明,SVM分类算法对木材表面缺陷具有较好的识别能力,识别率可达96%以上。    

18.  最小二乘支持向量机在储层流体识别中的应用  被引次数:5
   魏聪  肖玉峰  董平川《石油天然气学报》,2009年第31卷第2期
   在测井储层流体识别中引入基于统计学习理论的最小二乘支持向量机(LS-SVM)算法,它是在传统的支持向量机(SVM)基础之上加以改进的一种新算法。LS-SVM采用结构风险最小化原则代替了传统的经验风险最小化原则,保证了其具有全局最优性和较好的泛化能力,并且它将凸二次规划问题转变成了线性方程组的求解问题.使计算效率大大提高。介绍了LS-SVM方法的基本原理和多分类方法,通过该法利用少量的测井资料作为学习样本,准确地对油气水层进行了识别。将它与交会图判别法和BP神经网络方法的预测结果进行比较,表明用LS-SVM方法来进行储层流体识别是可行的,且具有一定的优越性。    

19.  基于小波包Shannon熵SVM和遗传算法的电机机械故障诊断  被引次数:8
   张亚楠  魏武  武林林《电力自动化设备》,2010年第30卷第1期
   针对电机机械多故障同时诊断问题,基于小波包、Shannon熵、支持向量机(SVM)和遗传算法,提出了一种电机机械故障诊断新方法,称之为WPSSG法或多模型融合法。该方法选择容错性强的Shannon熵作为特征参数,通过对振动信号进行基于DMeyer小波的小波包分解,提取振动信号的小波包Shannon熵为特征向量,将特征向量作为多类别SVM的输入,具有较高的去噪能力;在训练SVM时,与传统方法多采用试凑法选择参数不同,该方法采用遗传算法对SVM的参数进行全局寻优,使SVM获得最佳的分类性能,具有更高的识别准确率。采用凯斯西储大学提供的电机机械故障数据进行实验,结果证明该方法具有很好的可靠性和准确性。    

20.  支持向量机用于胍类化合物Na/H交换抑制活性的模式识别  被引次数:2
   赵慧  陆文聪  张良苗  姚莉秀《计算机与应用化学》,2002年第19卷第6期
   将Vapnik提出的支持向量机(support vector machine,简称SVM)算法用于化合物活性的模式识别研究。SVM算法是特别适合于用有限已知样本训练建模,进而预报未知样本属性的模式识别新算法,将其用于N-(3-氧-3,4-双氢-2氢-苯并[1,4]恶嗪-6-羟基)胍类化合物的Na/H交换抑制活性类别的识别研究,用留一法考察了SVM模型的预报能力,并与Fisher判别矢量法和最近邻(KNN)法的分类预报结果进行比较,结果表明:SVM算法的预报结果优于Fisher法和KNN法的结果,因此,SVM算法可望应用于药物的构效关系研究领域。    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号