首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 98 毫秒
1.
The effect of homogenization on the hardness, tensile properties, electrical conductivity and microstructure of as-cast Al-6Mg-0.4Mn-0.25Sc-0.12Zr alloy was studied. The results show that during homogenization as-cast studied alloy has obviously hardening effect that is similar to aging hardening behavior in traditional Al alloys. The precipitates are mainly Al3(Sc,Zr) and Al6Mn When homogenization temperature increases the hardness peak value is declined and the time corresponding to hardness peak value is shortened. The electrical conductivity of the alloy monotonously increases with increasing homogenization temperature and time. The decomposition of the supersaturated solid solution containing Sc and Zr which is formed during direct chilling casting and the precipitation of Al3(Sc, Zr) cause hardness increasing. The depletion of the matrix solid solubility decreases the ability of electron scattering in the alloy, resulting in the electrical conductivity increased. Tensile property result at hot rolling state shows that the optimal homogenization treatment processing is holding at 300-350℃ for 6-8 h.  相似文献   

2.
The effect of one-step aging temper on the mechanical properties, electrical conductivity and the microstructure of a novel Al-7.5Zn-1.6Mg-1.4Cu-0.12Zr alloy has been investigated. The results indicated that with elevating the aging temperature from 100℃ to 160℃, the aging response rate was greatly accelerated, and the UTS at peak aging condition decreased, while the corresponding TYS increased. However, the electrical conductivity of the alloy became higher. After aging for 24 h at 120℃, the peak UTS and TYS values were achieved as 591 MPa and 541 MPa, respectively; but the alloy achieved a lower conductivity, 20.4 MS/m. When T6 temper was performed at 140℃ for 14 h, the UTS decreased only by 1% of the former, whereas the TYS and the electrical conductivity increased obviously, which were up to 559 MPa and 22.6 MS/m, respectively. The major strengthening precipitates of the peak-aged alloy were GP zones and η′ phase. The precipitates in both the matrix and the grain boundary became coarser with rising aging temperature. There were obvious PFZs along the grain boundary both in T6 conditions aged at 140℃ and 160℃.  相似文献   

3.
Theparticulatereinforcedmetalmatrixcomposites(MMCs)haveexcellentcomprehensivepropertiesandpromisingapplicationsinthefieldsofaerospace,automobileandcivilindustries.Themaintraditionalprocesses,suchaspowdermetallurgyandcasting,havetheirownshortcomingsandca…  相似文献   

4.
The effects of heat treatment on the microstructure and mechanical properties of two alloys, namely Al- 12.2%Zn-2.48%Cu-2.0%Mg-0.15%Zr-0. 166%Ag(alloy 1), and Al-9.99%Zn-1.72%Cu-2.5%Mg-0.13%Zr(alloy 2) were investigated. The results show that low temperature aging after promotive solution treatment can increase elongation without the loss of strength for the studied alloys. The optimum aging treatment (T6) for alloy 1 and alloy 2 is 100 ℃/80 h and 100 ℃/48 h, respectively. Compared with other heat treatment alloys, alloy 1 and alloy 2 show super-high tensile strength up to 753 MPa and 788 MPa, remaining 9.3% and 9.7% elongation under T6 condition, respectively. During aging, trace addition of Ag enhances the formations of GP zone and metastable phase, and stabilizes GP zone and metastable phase to a higher temperature. Trace addition of Ag prolongs the aging time of reaching the peak strength and delays over-aging condition of the alloy. However, trace addition of Ag promotes the formation of coarse constituent in the alloy and consumes hardening alloying elements of Zn and Mg. Moreover, the addition of the transition element Zr in 7000 series super-high alloy forms incoherent Al3 Zr dispersoid which can serve as nucleation sites for nonuniform precipitation of η phase during aging process. The higher the aging temperature, the greater the tendency for nonuniform precipitation of η phase.  相似文献   

5.
The combined effects of pre-deformation and pre-aging on the mechanical properties of AlCu-Mg alloy with Sc and Zr addition were investigated. It is revealed that the introduction of pre-deformation can enhance the peak-aging strength, as well as tensile and yield strength, effectively due to the formation of finer and more dispersive precipitation. Pre-aging process before pre-deformation can increase the elongation while maintaining higher strength with a discontinuous distribution of precipitates at grain boundary. The precipitates of bean-like Al3(Sc, Zr) particles further strengthen the alloy via pinning the dislocations which are formed during pre-deformation process and hindering the dislocation motion. Furthermore, pre-deformation and pre-aging accelerate the kinetics of precipitation due to preferential sites provided by the dislocation and the increase of GPB zones' size and distribution. The synergism of pre-deformation and pre-aging achieves a combination of better mechanical properties and shorter peak-aging time.  相似文献   

6.
Inconel 718 superalloys deposited by laser solid forming (LSF) were heat treated with solution treatment,intermediate heat treatment (IHT) and two-stage aging treatment in sequence (SITA heat treatment).The effect of IHT temperature on microstructure,tensile property and notch sensitivity of LSFed Inconel 718 superalloy at 500 ℃ were investigated.As-deposited columnar grains have transformed to equiaxed grains and the grains were refined due to the recrystallization during the SITA heat treatment.It is found that the size and amount of δ phase dispersed at grain boundaries decreased with the increasing of IHT temperature,and δ phase disappeared when the IHT temperature reached 1 020 ℃.The ultimate tensile strength (UTS) and yield strength (YS) of smooth samples increased to a maximum when the IHT temperature reached 980 ℃ and then decreased slightly to a minimum when the IHT temperature was 1 000 ℃,and followed by slight increasing again till the IHT temperature reached 1 020 ℃,resulted from the competition of precipitation strengthening effect of γ″ and γ’ phase and the grain boundary weakening effect caused by the gradual disappearance of δ phase with increasing the IHT temperature.The notch sensitivity factor (qe) decreased but still greater than 1 as the IHT temperature increased,which is attributed to the decrease of the size and amount of δ precipitation.  相似文献   

7.
The mechanical properties and stress corrosion cracking (SCC) resistance of an Al-Zn-Cu-Mg-Sc-Zr alloy under different aging conditions were investigated. The dependence of microstructure and mechanical properties on aging parameters was evaluated by tensile test, hardness test and conductivity measurement. The results show that for the alloys with retrogression and re-aging treatment (RRA), the conductivity increases with the retrogression time and temperature, while the tensile strength decreases. The transmission electron microscopy (TEM) results show that the precipitates η(MgZn2) at grain boundary aggregate apparently with retrogression time and the precipitates inside the matrix exhibit the similar distribution to T6 temper, which comprises fine GP zones, large η′(MgZn2) and η(MgZn2) phases. According to the mechanical properties and microstructure observations, the optimal RRA regime is recommended to be 120 °C, 24 h + 180 °C, 30 min + 120 °C, 24 h. The strength level of the alloy after the optimum RRA treatment is similar to that in T6 condition and the SCC resistance is improved obviously in contrast to T6 condition.  相似文献   

8.
The effect of trace elements Mg and Ag on the aging precipitation has been studied. It has been shown that both Mg and Ag have no obvious effect on the aging pre- cipitates but influence the nucleation and growth velocities of the precipitates in binary Al-Cu alloy if added separately. However, when Al-Cu alloy contains both elements Mg and Ag, Mg and Ag atoms strongly attract each other and form atom clusters along the matrix {111} planes. These atom clusters help the Cu atoms aggregate and nucleate het- erogeneously along the matrix {111} planes, which makes Mg atom clusters the optimized nucleation sites for Ω phase and inhibit the nucleation of θ′ phase.  相似文献   

9.
Effect of element cerium (Ce) on microstructure and mechanical properties of Al-Zn-Mg-Cu alloys has been investigated by transmission electron microscopy (TEM), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and hardness test. The results show that addition of Ce can remarkably refine the as-cast grains and eutectic microstructure. A transformation from Mg(Zn,Cu,Al)2 phase to Al2CuMg phase is observed during homogenization. Furthermore, the Ce addition introduces changes in the precipitation process and consequently in the age-hardening behavior of the alloy. Microstructural measurements reveal that the addition of Ce promotes the precipitation of η′ phase, but it also partly retards the precipitation of GP zones. The density of precipitates decreases in a certain degree and rod-like η′ precipitates increase when Ce content is from 0.2% to 0.4% (mass fraction).  相似文献   

10.
A creep technique was applied on a Gleeble-1500 thermal simulator for monitoring the aging precipitation in ultra-low carbon steels containing various coppers. The aging hardening curve was obtained by the hardness testing. With the aid of an optical microscope and TEM, the microstructure and the aging precipitates were detected. The results indicate that when the precipitation occurs during the creep a plateau will appear on the creep curve; the left-hand and right-hand endings of the plateau correspond to the precipitation start (Ps) and finish (Pf) times, respectively. The Pf obtained from the creep curve coincides with the peak hardness time (tp) at the aging hardening curve. A precipitation-time-temperature (PTT) diagram of the steel can be obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号