首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
回采巷道锚杆支护两帮稳定性分析   总被引:5,自引:1,他引:4  
根据巷道围岩应力变化特点结合锚固体变形破坏的相似材料模拟试验, 分析了巷道两帮锚固体的变形破坏特征, 指出锚杆支护巷道两帮表面主要发生张性破坏, 锚固体内部发生剪切破坏, 据此建立起回采巷道锚杆支护两帮稳定的分析模型, 提出了两帮稳定的判别准则, 即锚固体中锚杆的拉应变必须小于锚杆的允许拉应变, 在巷道两帮围岩较松软时, 还必须满足巷道周边位移值的要求  相似文献   

2.
Proper design of rock bolt support in underground mines is critical to avoid incidents, accidents and loss of production. The traditional design approach only considers the axial(tensile) capacity and this is clearly not the situation in situ, where a rock bolt is subjected to both axial and shear/bending loads which determines its overall performance and failure behaviour. To demonstrate and analyse the shear displacement in bedded roof, scaled physical models of underground excavation were created. From the models it was found that the shear displacement between the layers depends on the vertical roof deformation and thickness of beds. To analyse the effect of combined loading on rock bolt design for suspension and beam building models, analytical methods were used to calculate the required spacing of rock bolt for a given safety factor. Numerical models were then created using Rocscience RS2 software to establish the stresses on the rock bolt. The results show a significant reduction in safety factor for suspension as demonstrated in an example(reduced from 3.5 to 2.0) and beam building(2.0 to 1.36) when the rock bolt capacities are calculated considering the effect of combined loading as opposed to just the axial or shear loads.  相似文献   

3.
三软煤层巷道支护方式及围岩控制效果分析   总被引:5,自引:0,他引:5  
在分析三软煤层极不稳定煤巷矿压特点基础上,研制了适应两帮大变形的可缩性工字钢支架、适应两帮及顶底严重变形特别是底鼓的U29可缩性环形支架,设计了锚架注联合支护的参数与工艺,并在同一采区先后进行了工业性试验.采用数值模拟方法研究了三软条件下锚梁网索支护不同参数选取、不同布置形式对围岩变形的控制效果,优选了支护参数并进行了现场试验,比较试验结果,表明极不稳定煤巷围岩变形主要特点是强烈和持久的两帮移近及底鼓,锚梁网索支护是控制围岩大变形的有效方法,其技术关键是提高锚杆初锚力、布置底角锚杆及顶角锚索.  相似文献   

4.
参考实际工程中使用的外露式钢柱脚节点,以柱脚底板孔径、柱脚底板厚度、锚栓直径和锚栓强度为主要参数,设计7组共19个大直径锚栓的钢柱脚试件,开展抗剪性能试验研究. 试验表明,锚栓连接具有可观的抗剪能力,节点的最终破坏模式有3种:当基础混凝土配筋足够时为锚栓剪断,配筋不够时为混凝土冲切破坏,介于两者之间的锚栓剪断同时存在混凝土冲切裂缝;锚栓连接的荷载-相对位移曲线呈现2种类型,主要区别在于是否存在滑移段. 对于锚栓连接的抗剪承载力设计值,将 3个已有理论模型与试验结果对比,给出推荐的简化公式. 对于锚栓连接的极限抗剪承载力,提出考虑锚栓截面拉力、剪力和弯矩影响的计算模型.  相似文献   

5.
Rock bolts are subjected to different loading conditions along their lengths such as axial, bending, and/or shear forces, which can cause failure at lower loads than those considered for design purposes. The common existing methodologies do not consider the actual loading of the rock bolts and assume it is only pure axial or pure shear. This study was conducted to investigate the un-grouted rock bolt performance under combined load conditions. Two loading regimes were evaluated: the effect of initial shear displacement on axial load capacity and displacement, and the effect of axial displacement on the shear load capacity. The first regime was also conducted for shear with a gap, when there is a spacing between the shear interfaces. The results of this study showed that the rock bolt can resist higher axial loads than shear under pure or combined load conditions. Under combined load conditions, the rock bolt capacity decreased significantly for both regimes. However, when applying the shear load with a gap, the rock bolt load capacity was not affected significantly. Also, the total bar deformation was improved for shear and axial. The findings of this study show the need to improve the rock bolt design considering the complex loading conditions in situ with/without a gap.  相似文献   

6.
考虑剪胀对隧道围岩稳定性的影响,对浅埋圆形盾构隧道、浅埋两车道公路隧道和浅埋双线铁路隧道在围岩发生塑性流动时进行力学特征分析。分析圆形盾构隧道围岩的位移,塑性区分布和最大剪切应变率;计算圆形断面、双线铁路隧道、双车道公路隧道等3种不同断面形状隧道的稳定性系数,分析剪胀角对围岩稳定性系数的影响。研究结果表明:剪胀角对围岩位移的影响存在一个临界值;在围岩发生塑性流动时,塑性区随着剪胀角的增大而逐渐增加;剪胀角对围岩剪切破坏带和围岩稳定性系数都有较大影响;随着剪胀角的变化,隧道临界稳定系数也发生变化。  相似文献   

7.
Based on the characteristics of the deep circular tunnel, the surrounding rock was divided into three regions: the cracked region, the plastic region and the viscoelastic region. The process of rock stress deformation and change was divided into three stages after the roadway excavation. By using the elastic–plastic mechanics theory, the analytical solutions of the surrounding stress and displacement at different stages and the radii of cracked and plastic regions were formulated. We additionally explained the surrounding rock stress and displacement which appeared in practical project. Simultaneously, based on the problem which emerged from a mine in Xuzhou during the excavating process of rock roadway’s transport, we got the theoretical solutions for the stress and displacement in the process of rock roadway’s excavation and considered that the broken area of rock roadway was largely loosing circle. The results indicate that according to the rheological characteristics of surrounding rock, in the primeval excavation of rock roadway, we should increase the length of anchor bolt and cooperate it with anchor nets cable-U steel supporting frame. In addition, when the deformation rate of the surrounding rock is descending after the 15 days’ excavation, we should use the “three anchor” supporting method (anchor bolt spray, anchor note and anchor rope) and set aside about 20 cm as the reserved deformation layer.  相似文献   

8.
The measured data and simulation test phenomenon of surrounding rock deformation and failure at the project site indicate that shear failure which firstly occurs in surrounding rock, block slip and second shear failure are the root cause of deformation and damage of supporting structure of the surrounding rock at a large scale. We derived limit load of surrounding rock shear slip failure and reasonable support resistance of given load by means of shear slip line field theory, discussed the main factors which influence the limit load of surrounding rock. Shear slip line field and limit load of circular tunnel surrounding rock were obtained by means of physical simulation test, which agreed well with the theoretical analysis results. Based on the theoretical analysis and physical simulation test, the cause deformation and failure at large scale of Xinshanghai No. 1 coal mine big section ingate was analyzed, and the shear failure resistance and block slip in surrounding rock were proposed as the core technical supporting ideas. Proper range of supporting resistance which came from calculation was suggested. The support scheme which is mainly composed of large grouting anchor, sprayed anchor net support technique and full-face grille concrete finally ended the dilemma of repeated failure and mending of ingate and created critical conditions for smooth production in the coal mine.  相似文献   

9.
为探究不同大变形等级下层理角度对层状软岩隧道的影响,依托九绵高速全线软岩大变形隧道,通过岩石力学试验确定遍布节理模型参数,基于数值模拟,探究不同软岩大变形等级(轻微、中等、强烈)下层理角度对层状软岩大变形隧道围岩及支护体系受力变形的影响,并通过现场统计的层理角度与大变形情况对数值模拟结果进行验证。结果表明:1)层理小角度(0°、15°)与大角度(90°)围岩变形、支护结构受力变形较大,随着大变形等级的增大,层理角度引起的围岩支护变化效果越明显。2)随着层理角度的增大,围岩变形从拱底逐渐转移到右拱腰。围岩变形主要发生在隧道轮廓与层理面相切位置,其中拱底及左拱脚对层理角度变化较敏感。3)初支应力偏向及节理塑性区大致与层理弱面法向一致,随着层理角度的增大,节理的剪切塑性区由拱顶、拱底转移到左拱脚、右拱肩,最终偏移到左右拱腰上下位置;相比初支压应力,初支拉应力对层理角度更敏感,垂直节理增大了张拉剪切破坏塑性区贯通的风险,但剪切破坏塑性区半径反而有可能减小。4)现场的统计规律表现为小角度与大角度大变形等级较高,层理角度为60°以下时,岩层破坏发生在拱腰及拱肩处,随着层理角度的增大,有向拱肩发展的趋势,大角度层理时岩层破坏主要发生在拱腰处。  相似文献   

10.
In order to solve the large deformation controlling problem for surrounding rock of gob-side entry driving under common cable anchor support in deep mine, site survey, physical modeling experiment, numerical simulation and field measurement were synthetically used to analyze the deformation and failure characteristics of surrounding rock. Besides, applicability analysis, prestress field distribution characteristics of surrounding rock and the control effect on large deformation of surrounding rock were also further studied for the gob-side entry driving in deep mine using the cable-truss supporting system. The results show that, first, compared with no support and traditional bolt anchor support, roof cable-truss system can effectively restrain the initiation and propagation of tensile cracks in the roof surrounding rock and arc shear cracks in the two sides, moreover, the broken development of surrounding rock, roof separation and extrusion deformation between the two sides of the roadway are all controlled; second, a prestressed belt of trapezoidal shape is generated in the surrounding rock by the cable-truss supporting system, and the prestress field range is wide. Especially, the prestress concentration belt in the shallow surrounding rock can greatly improve the anchoring strength and deformation resisting capability of the rock stratum;third, an optimized support system of ‘‘roof and side anchor net beam, roof cable-truss supporting system and anchor cable of the narrow coal pillar" was put forward, and the support optimization design and field industrial test were conducted for the gob-side entry driving of the working face 5302 in Tangkou Mine, from which a good supporting effect was obtained.  相似文献   

11.
在竹结构中,柱脚一般会出现受拉荷载,针对该现象提出一种内嵌杉木的毛竹螺栓连接形式,设计15个内嵌杉木的毛竹螺栓连接试件并进行轴向拉伸试验.根据Karacabeyli-Ceccotti建议的50% 极限荷载法确定试件的屈服荷载和屈服位移,阐述了荷载位移曲线中不同变形阶段的特征,分析了螺栓直径和螺孔端距对连接试件的承载力和...  相似文献   

12.
For the engineering geology conditions of bad mine roadway roof and floor lithology in extremely weak cemented strata, the best section shape of the roadway is determined from the study of tunnel surrounding rock displacement, plastic zone and stress distribution in rectangular, circle arch and arch wall sections, respectively. Based on the mining depth and thickness of the coal seam, roadway support technology solutions with different buried depth and thickness of coal seam are proposed. Support schemes are amended and optimized in time through monitoring data of the deformation of roadway, roof separation, I-beam bracket, bolt and anchor cable force to ensure the long-term stability and security of the roadway surrounding rock and support structure. The monitoring results show that mine roadway support schemes for different buried depth and section can be adapted to the characteristics of ground pressure and deformation of the surrounding rock in different depth well, effectively control the roadway surrounding rock deformation and the floor heave and guarantee the safety of construction and basic stability of surrounding rock and support structure.  相似文献   

13.
软岩巷道锚喷支护破坏原因主要有:巷道底板无支护或支护的强度不够,底板流变极易发展,形成了围岩体的流变通道;大部分锚杆支护为低工作阻力值,支护作用没有得到有效发挥;混凝土喷层和围岩体变形不匹配,导致喷层体离层、剪切破坏;钢笆网抵抗破坏和变形的能力弱,降低了网喷层的强度和抗变形能力.采取的支护对策有:底板反拱加强支护,避免局部围岩体的整体移动,实现巷道周边岩体的均匀收敛变形;选用长锚杆,更好地控制巷道围岩的变形;初喷混凝土为厚度20 mm薄喷层,实现初喷层与巷道围岩体的同步变形;用直径4 mm冷拔钢丝编织金属网替代钢笆网,提高网喷层支护体的强度与抗变形能力;二次锚杆支护在复喷混凝土后进行,防止网喷层与围岩体离层现象的发生.  相似文献   

14.
In presence of difficult conditions in coal mining roadways, an adequate stabilization of the excavation boundary is required to ensure a safe progress of the construction. The stabilization of the roadways can be improved by fully grouted rock bolt, offering properties optimal to the purpose and versatility in use. Investigations of load transfer between the bolt and grout indicate that the bolt profile shape and spacing play an important role in improving the shear strength between the bolt and the surrounding strata. This study proposes a new analytical solution for calculation displacement and shear stress in a fully encapsulated rock bolt in jointed rocks. The main characteristics of the analytical solution consider the bolt profile and jump plane under pull test conditions. The performance of the proposed analytical solution, for three types of different bolt profile configurations, is validated by ANSYS software. The results show there is a good agreement between analytical and numerical methods. Studies indicate that the rate of displacement and shear stress from the bolt to the rock exponentially decayed. This exponential reduction in displacement and shear stress are dependent on the bolt characteristics such as: rib height, rib spacing, rib width and grout thickness, material and joint properties.  相似文献   

15.
本研究为应用基础研究,以解决工程实际问题为目的,以围岩中客观存在的破裂区为主线,从对地下工程稳定性问题的评价入手,以相似材料模型试验和数值模拟计算为基本手段,以断裂力学为基础,研究了断续节理岩体的细观破坏机理、宏观破坏过程及其对围岩破裂区和围岩碎胀变形的影响规律;研究了断续节理岩体中围岩破裂区的性质、破裂区与地下工程稳定性的关系等问题,提出了以围岩破裂区和围岩收敛量作为判定围岩稳定性方法,为采矿工程的设计、施工和生产提供了较为可靠的决策依据.本文获得以下主要结论:1)围岩破裂区是一个综合数量指标,采用以围岩破裂区厚度作为围岩稳定性评价的指标.2)采用数字照相变形量测方法来测量围岩的变形,较好地解决了平面应变模型试验中的变形量测问题,符合非接触变形量测的发展趋势.3)断续节理岩体的破坏机制为:在集中应力作用下,节理端部岩桥首先发生张拉破坏,新生的岩桥裂纹与邻近原生节理相互串通,最终形成阶梯状滑移面而使岩体强度丧失.4)当节理两端的次生裂纹扩展长度l=h/sinβ时,节理岩体将产生贯通破坏.5)在节理岩体中,围岩破裂区是由于新生裂纹与节理相互贯通导致纵横交错的贯通裂隙所致,断续节理贯通破坏的边界可定义为围岩破裂区的边界.6)通过相似模型试验发现,当节理密度大时,围岩破裂区会跨越相邻节理;反之,节理对围岩破裂区的扩展有阻隔作用.7)围岩收敛速率的第一次突然增大,预示围岩中已产生破裂区,而围岩收敛速率的每一次突然增大,意味着围岩产生了剧烈的破坏.8)当节理角度在30°~75°之间时,节理角度对岩体强度的影响较大,并且在60°左右时岩体强度最低,稳定性也最差.9)当巷道的收敛量达到或超过2.5%时,巷道围岩中将产生破裂区;当巷道的收敛量达到或超过5%时,巷道将发生冒顶事故,已处于失稳状态;当巷道的收敛量达到或超过22.8%时,巷道将完全毁坏,并失去了人工稳定的可能.  相似文献   

16.
目的试验与分析辽宁区域性饱和黏性土(黏土与粉质黏土)和粉土抗剪强度参数.对辽宁盘锦地区黏性土抗剪强度特征取得了规律性认识,提高评价土质的可靠性.方法采用室内直剪试验、三轴试验与室外十字板剪切试验、静力触探试验.结果黏土内摩擦角φ好于粉质黏土、粉土;内聚力C的相关性相对于摩擦角较差;黏土的内聚力成负相关;直剪试验(快剪)抗剪强度指标内摩擦角φ和黏聚力C高于三轴试验(UU)的抗剪强度指标.不排水抗剪强度经验公式Cu=18.0 11.02qu适应于辽宁盘锦地区的黏土.结论建立了室内直剪试验与三轴试验抗剪强度指标之间关系,及十字板剪切试验与静力触力试验之间的关系,为以后在辽宁盘锦地区地基勘察评价中估计黏性土的抗剪强度提供参考.  相似文献   

17.
For coal mines, rock, coal, and rock bolt are the critical constituent materials for surrounding rock in the underground engineering. The stability of the “rock-coal-bolt” (RCB) composite system is affected by the structure and fracture of the coal-rock mass. More rock bolts installed on the rock, more complex condition of the engineering stress environment will be (tensile-shear composite stress is principal). In this paper, experimental analysis and theoretical verification were performed on the RCB composite system with different angles. The results revealed that the failure of the rock-coal (RC) composite specimen was caused by tensile and shear cracks. After anchoring, the reinforcement body formed inside the composite system limits the area where the crack could occur in the specimen. Specifically, shearing damage occurred only around the bolt, and the stress-strain curve presented a better post-peak mechanical property. The mechanical mechanism of the bolt under the combined action of tension and shear stress was analyzed. Additionally, a rock-coal-bolt tensile-shear mechanical (RCBTSM) model was established. The relationship (similar to the exponential function) between the bolt tensile-shear stress and the angle was obtained. Moreover, the influences of the dilatancy angle and bolt diameter of the RCB composite system were also considered and analyzed. Most of the bolts are subjected to the tensile-shearing action in the post-peak stage. The implications of these results for engineering practice indicated that the bolts of the RCB composite system should be prevented from entering the limit shearing state early.  相似文献   

18.
为了探讨规则锯齿型软弱结构面的剪切特性,利用FLAC3D建立岩体软弱结构面的三维计算模型,分析结构面的剪切强度和变形特征.结果表明:剪切应力和剪切位移的关系从初期的线性特征转变为非线性特征;软弱结构面和岩体的耦合作用导致结构面的等效粘结力和等效内摩擦角均小于二者的平均值;迎剪切方向的结构面主要发生剪切破坏,而沿剪切方向的结构面主要发生拉伸破坏.结构面的剪切强度与剪切速率成线性关系;随着结构面厚度的增加,试样的剪切强度逐渐减小.研究得到的结果可为理论分析和工程实践提供参考.  相似文献   

19.
By applying experimental method, the bolt stress and supporting mechanism is studied during the deformation process of a rock mass containing a weak interlayer. The force measuring bolt is installed manually and instrumented five pairs of symmetrical strain gauges. The experimental results show that the fully grouted bolt suffers tensile, compressive, bending and shear stress at the same time. The bolt stress evolution is closely related to the deformation stages of the rock mass which are very gradually varying stage, gradually varying stage at the pre-peak and suddenly varying stage at the post peak stage.The axial compressive stress in the bolt is mainly induced by the moment. Thus, in most cases the axial compressive stress is distributed on one side of the bolt. For axial stresses, induced by the axial force and the bending moment at the post-peak stage, three types of changing are observed, viz. increasingincreasing type, decreasing-increasing type and increasing-decreasing type. The stress characteristics of the bolt section in the weak interlayer are significantly different from those in the hard rock. The failure models of the anchored bolt are tensile failure and shear failure, respectively. The bolt not only provides constraints on the free surface of the rock mass, but also resists the axial and lateral loading by the bending moment. This study provides valuable guidelines for bolting support design and its safety assessment.  相似文献   

20.
基于沿空切顶成巷技术原理,以城郊煤矿深部工作面无煤柱开采为背景,综合运用力学分析﹑模拟计算和现场试验等方法,对深部切顶成巷围岩控制关键对策进行深入研究。结果显示:切顶留巷顶板在侧向形成短臂梁结构,降低了巷旁支护体所受压力,切缝范围内岩层垮落后碎胀充填采空区,使留巷顶板下沉量降低了约50%。采空区侧顶板为切顶巷道围岩变形的关键部位,需进行加强支护;深部切顶巷道实体煤帮塑性区范围大,通过煤帮锚索支护技术可将浅部锚杆承载层锚固在弹性区稳定煤体中;深部切顶成巷来压速度快、强度大,巷内单体支柱易造成冲击破断,采用高阻力液压支架巷内临时支护时可较好地抵抗深部强动压;巷旁刚性挡矸装置因无法适应深部围岩大变形而受压弯曲破坏,深部切顶巷道巷旁挡矸结构需实现一定的竖向让位卸压方可与顶底板协调变形。在研究的基础上提出恒阻锚索关键部位支护+可缩性U型钢柔性让位挡矸+巷内液压支架临时支护+实体煤帮锚索补强的深部切顶成巷联合支护技术,并进行现场工业性试验。现场监测结果表明:留巷围岩在滞后工作面约290 m时基本稳定,且稳定后各项指标满足下一工作面使用要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号