首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
直流对等式微电网混合储能系统协调控制策略   总被引:1,自引:0,他引:1  
提出一种基于锂离子电池和超级电容混合储能的协调控制策略,使得混合储能系统(HESS)适用于风能、太阳能或者其他间歇式分布式电源供电的微电网。针对锂离子电池和超级电容的放电特性,提出DC-DC侧对等式并行双环控制策略,控制直流母线电压稳定的同时,利用控制环路自身带宽滤波特性及交流功率前馈达到功率分配效果;采用滞环PI控制方法,保证超级电容不会过放或者过充。DC-AC侧采用双同步坐标系下不平衡电流控制结构,有效跟踪不平衡参考电流。实验结果表明,所提出的协调控制策略能有效抑制直流母线电压冲击与波动,显著提高了系统动态响应;同时,超级电容利用效率得到提高,微电网在过渡状态下的性能也得到了改善。  相似文献   

2.
风电直流微网的电压分层协调控制   总被引:16,自引:0,他引:16  
对于以新能源发电为主的微网系统,直流微网以其显著优势成为微网技术新的研究方向。该文以风电直流微网为例,在分析直流微网的构成以及各种运行模式的基础上,提出电压分层协调控制策略。该控制策略通过检测直流电压的变化量来协调各电力电子变流器的工作方式,从而确保在不同工况下都能保持微网内的有功功率平衡。各变流器独立工作,无需相互通信,可简化控制系统结构,并使直流微网具备"即插即用"功能。通过对含永磁风电机组、储能蓄电池的直流微网的仿真分析,验证所提控制策略对直流微网的有效控制。在风速或负荷变化、电网故障、蓄电池达到容量限定值等各种工作状态下,各端变流器都能根据直流电压变化量做出快速响应,从而提高了系统的稳定性和供电质量。  相似文献   

3.
混合储能技术在微电网中具有广泛的应用。根据混合储能系统的连接方式,提出了一种基于锂电池/超级电容混合储能的分层协调控制策略。该控制策略实现了混合储能系统内外层的功率平衡,其中外层控制策略平抑直流母线电压的波动,内层控制策略优化外层储能设备的SOC (state of charge),防止储能设备的过充和过放。在MATLAB/S imulink中搭建混合储能系统的仿真模型,仿真结果验证了所提控制策略的有效性。  相似文献   

4.
郭慧  汪飞  顾永文  李玉菲 《电工技术学报》2022,37(12):3117-3131
由于直流微电网中的分布式发电具有随机性和波动性等特点,储能单元的配合可较好地解决这一问题。但是,现有基于直流母线电压信号的分层控制未充分考虑多储能单元的协调以及孤岛系统容量不足的情况。因此,该文提出一种基于电压分层控制的直流微电网及其储能扩容单元功率协调控制策略。为实现电压分层下多储能单元的分散协调控制,该文首先揭示已有微电网系统不同运行模式所对应的负载功率边界。然后,提出基于多储能单元荷电状态(SOC)的改进模糊控制和下垂控制,以实现多储能单元充放电功率自适应分配。针对孤岛系统容量不足的情况,在储能扩容单元容量计算的基础上,提出一种基于过/欠电压控制器的储能扩容单元功率协调控制策略,并分析其对已有系统功率边界的影响,以保证直流微电网安全可靠运行。最后,通过仿真和实验结果验证了所提控制策略的可行性和有效性。  相似文献   

5.
直流微网混合无源控制及系统分层控制策略   总被引:1,自引:0,他引:1  
为提高多变换器直流微电网系统在负载功率和下垂参数发生变化时的稳定性及控制性能,采用无源控制策略与母线电压分层控制策略相结合的控制方式,从系统能量角度建立方程进行稳定性分析和设计.通过建立各变换器单元欧拉-拉格朗日EL(Euler-Lagrange)模型,设计了混合无源控制器,并结合母线电压分层控制组成混合控制策略.最后...  相似文献   

6.
为实现电-氢混合储能微电网在孤岛状态下的自治经济运行,并降低系统运行对通信网络的依赖,提出一种计及效率特性的直流微网经济下垂控制策略。该控制策略充分考虑电-氢混合储能系统各子系统的工作特性,研究了系统运行与效率的关系,并构建了计及效率特性的电-氢混合储能直流微电网系统成本函数。再结合电-氢混合储能系统的互补工作模式,驱动各系统基于成本分散地实施电-氢混合储能系统的运行方案,进而提高直流微电网的自治经济性能。最后,通过RT-LAB实验平台开展实时仿真。结果表明:所提控制策略相较于传统经济下垂控制,能够实现燃料电池和电解槽高效率区间的稳定运行,验证了效率特性对经济运行的必要性;在一天的运行实验下,其运行成本相较于传统经济下垂控制降低了10.38%,验证了所提出策略的经济性。  相似文献   

7.
新能源和新负荷在现代电力系统中的渗透率日益提高,直流微电网在整合新能源和新负荷方面具有诸多优势,是未来智能配用电系统的重要组成部分。直流微电网系统内不存在无功控制与频率稳定等问题,母线电压是衡量系统供需功率是否平衡的首要指标。依据母线电压信号将系统运行划分为四个层级,在不同层级下母线电压由不同的电源维持稳定。母线电压在第一层至第三层时,电压波动范围较小由分布式电源维持母线电压稳定;电压在第四层级时,系统供需功率严重不平衡由交流电网维持母线电压稳定。依据各个分布式电源的发电特性,采用不同的控制技术实现分布式电源的合理出力。最后,建立直流微电网的MATLAB/Simulink仿真模型,仿真结果表明所提出的策略具有有效性和可行性。  相似文献   

8.
针对离网型光伏直流微电网中光伏输出功率与负载消耗功率不匹配引起的母线电压波动问题,通常采用蓄电池和超级电容相结合的混合储能装置进行补偿,一般通过下垂控制对储能装置进行功率分配,传统下垂控制很难实现下垂系数按照不同频率特性的功率波动进行有效调节,其分配特性还会受线路阻抗等其它因素的影响。文章在传统下垂控制的基础上提出了模糊-下垂控制策略,实时优化下垂系数,平抑系统内部因素所引起的负面影响,实现直流微电网中不平衡功率在蓄电池和超级电容间的合理分配。通过MATLAB/Simulink仿真证明,所提出的模糊-下垂控制策略能够有效实现直流微电网中的功率调节,抑制母线电压的波动,提高了系统的鲁棒性。  相似文献   

9.
直流微网中分布式电源出力的随机波动性,不仅会引起直流母线电压大范围波动,还会影响系统的稳定运行。对此,提出了一种光储直流微网能量协调控制方法,实现了因系统功率供需不平衡引起的母线电压波动的快速平抑。该方法优先利用新能源为负荷供电,通过设定并网变换器和储能模块的工作阈值以协调管理各模块间的能量流动,避免直流母线电压小范围波动引起电力电子器件频繁动作,实现能量的最优利用。在并网状态下,直流微网通过并网变换器与大电网进行能量交换;在离网状态下,光伏模块与混合储能模块协调配合给本地负载供电。其中,考虑混合储能模块的充放电裕量,结合超级电容功率密度大和锂电池能量密度高的特点,混合储能模块让超级电容先工作来平衡系统瞬时功率,提高系统的动态响应特性,减少锂电池动作次数,延长使用寿命。锂电池工作后,可以配合超级电容调整直流母线电压,防止超级电容达到饱和的速度过快。仿真验证了所提方法的有效性。  相似文献   

10.
为了减少功率损耗和确保独立交直流混合微电网稳定运行,设计一种新的基于混合储能动态调节的分布式协调控制策略。通过检测直流电压和交流电压频率,该策略对连接交直流微电网的双向AC/DC变流器输出功率进行动态调节。混合储能中采用下垂控制自动调节蓄电池的输出功率,同时超级电容器迅速提供负荷功率的高频分量,以减小负载突变对蓄电池和母线电压造成的冲击。此外,在逆变器的下垂控制器中引入电压前馈补偿量来减小交流负荷的电压波动。最后,利用Matlab/Simulink搭建了混合微电网仿真模型。仿真结果表明,在不同工况下,该分布式控制策略均能控制混合微电网稳定运行及电压稳定。  相似文献   

11.
针对含有功率型和能量型两种储能电池的复合储能系统(HESS),在此提出了一种考虑储能电池自身充放电特点的HESS的协调控制策略。该控制策略根据直流母线电压-充放电电流(U-I)下垂曲线由U得到I的基准值,利用高通滤波器提取电流的高频分量作为功率型储能单元的充放电电流指令,剩余低频分量作为能量型储能单元的充放电电流指令。利用该控制策略,便可以实现在稳定U的基础上两种不同的储能单元根据自身的技术特点实现外部功率的响应。最后利用dSPACE 1104半实物实验平台验证了所提出的控制策略的可行性和有效性。  相似文献   

12.
直流微网中通常采用混合储能系统作为缓冲环节,对分布式能源和负载引起的不同时间尺度功率波动进行补偿。为实现功率在能量密度型储能元件和功率密度型储能元件之间合理分配,提出无互联通信网络的分层控制策略。其中,底层控制以电压变化率作为虚构的信息载体,通过设置不同储能接口变换器输出电压关于功率的"灵敏度",确保超级电容在负载突变瞬间能够提供大部分功率;二次控制对底层控制产生的稳态误差进行补偿,以实现输出电压稳定,并保证超级电容稳态电流为零。在此控制框架下,各储能单元仅需本地信号即可实现自主协调运行,避免了互联通信网络所带来的经济性和可靠性问题。最后,实验结果验证所提方法的可行性和有效性。  相似文献   

13.
针对交直流混合微电网,提出一种接口换流器与直流侧电网储能DC/DC换流器的协调控制策略。不管系统工作在何种状态,储能DC/DC换流器始终进行电压控制以实现直流侧电压的零偏差,而接口换流器通过检测交直流混合微电网状态调节自身工作方式,实现微电网系统在并网及孤网模式下的稳定运行和2种模式稳定、快速的切换。通过计算机软件仿真及物理实验的验证,可以证明这种控制策略可以实现交直流混合微电网直流侧电压在孤网状态下的零偏差,并且运行与模式切换的稳定性良好。  相似文献   

14.
根据并网型交直流混合微网的结构及运行要求提出4层运行方式。为了反映储能损耗的非线性特性,提出一种储能损耗成本积分计算模型,并以设备维护成本、储能及换流损耗成本和购售电费构成的日运行费用最小为目标,建立了交直流混合微网经济优化模型。实际算例分析表明经济参数之间的耦合关系决定交直流微网的运行方式,分析结果验证了所提并网型交直流混合微网运行方式、经济优化模型及储能损耗积分模型的合理性。  相似文献   

15.
混合储能相较于单一储能可以更好地解决微电网电压、频率波动等问题。为了充分利用混合储能系统的优势,使各储能电池优势互补,并考虑到储能变换器弱阻尼、低惯性的特点,提出了基于虚拟直流发电机控制的混合储能单元分频控制策略。该控制策略在混合储能单元分频控制的基础上,对功率密度电池储能变换器采用虚拟直流发电机控制,以增大功率密度型储能的阻尼和惯性,提升直流母线电压的动态稳定性。为验证其有效性,在微源变化和负荷波动2种工况下与传统下垂控制进行仿真对比分析,结果表明所提策略可使母线电压的波动范围限制在±0.75%以内,增强了系统的鲁棒性和稳定性并优化了储能单元的充放电性能。  相似文献   

16.
针对无通信互联线的储能系统如何在不增加系统成本和复杂度的前提下维持直流母线功率平衡及电压稳定,提出了一种直流母线协调控制策略,DC/AC变流器采用定直流电压或定交流电压控制,两台DC/DC变换器采用包含电池充放电控制的改进型二阶直流电压偏差控制。通过对系统典型工况的分析,说明了系统中各个装置是如何协调工作的。搭建了微网实验平台对所提出的控制策略进行了实验验证,实验结果证明了该控制策略的有效性和实用性。  相似文献   

17.
以直流微电网中的分布式储能系统为研究对象,分析了储能单元间存在的功能、参数和信息的不对称性,并提出了混合储能单元多工作模式下最大输出功率及等效荷电状态(SOC)的评估方法。在此基础上,提出了一种基于离散一致性算法的分布式储能系统负荷功率分配分层控制策略:在下层,以储能单元多模式参数评估为依据,使用动态下垂控制对各储能单元输出功率进行一次分配;在上层,以减小分布式储能系统等效SOC差异为目标,利用相邻单元之间的的弱通信,使用离散一致性算法产生电流修正量,直接调节下垂控制电流参考值,动态调整处于不对称工作状态的各混合储能单元的输出功率。最后,在MATLAB/Simulink中建立了仿真模型,对所提控制策略进行了仿真验证。  相似文献   

18.
分布式控制策略由于可以与系统的监测体系相结合,有效解决了传统下垂控制方法所带来的电压跌落等问题。鉴于已有分布式控制策略在电压跌落补偿以及储能系统管理等方面的不足,该文采用新的分层控制策略来实现孤立直流微电网的可靠运行。该策略分为2层,第1层控制是就地控制,采用本地母线电压信号作为电力平衡指标来划分系统的运行模式;第2层控制是依靠通信的系统级控制,采用低带宽通信技术来实现母线电压的实时调节,并且根据蓄电池荷电状态(stage of charge,SOC)调节下垂控制参数以达到SOC均衡化的目的。通过MATLAB/simulink搭建了光储直流微电网模型,仿真结果验证了第1层控制可以不依靠通信连接来实现系统可靠运行,加入依靠通信的第2层控制后,能有效解决传统下垂控制所带来的电压跌落问题,并实现蓄电池SOC的均衡化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号