首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
采用自适应小波包分解的混合储能平抑风电波动控制策略   总被引:5,自引:0,他引:5  
采用蓄电池和超级电容构建混合储能系统以平抑风电场输出功率波动,实现风电平滑并网。首先,针对不同风电出力场景下风电功率的波动特性,结合风电并网波动标准和混合储能系统性能特点,实现风电功率的自适应小波包分解和储能初级功率分配,得到风电并网功率和混合储能初级功率指令;其次,在混合储能系统内部,根据超级电容的荷电状态,利用模糊优化控制对蓄电池和超级电容的功率指令进行二次修正,得到优化后的混合储能功率分配指令。算例分析表明,所提策略能够自适应地实现风电功率的最优分解和合理分配,确保混合储能荷电状态工作在合理区间,有效改善风电输出功率波动平抑效果,保证混合储能系统长期稳定运行。  相似文献   

2.
基于电压下垂法的直流微电网混合储能系统控制策略   总被引:2,自引:0,他引:2  
以稳定直流母线电压和优化蓄电池工作过程为目的,提出了一种基于电压下垂法的直流微电网混合储能控制策略。该控制策略根据直流母线电压信息,利用超级电容快速补偿母线功率缺额的高频部分;通过蓄电池对超级电容进行能量补充,间接补偿母线功率缺额的低频部分;利用超级电容电压不能突变的特点,实现对蓄电池电流的平滑控制。控制系统以直流母线电压、超级电容电压及蓄电池荷电状态为判断条件,自动切换工作模式。实验表明,该控制策略可自动调节蓄电池和超级电容出力,维持直流母线电压在额定值附近小范围波动,有效地减小了蓄电池充放电次数,延长其使用寿命。  相似文献   

3.
分布式光伏未来将在配电网中实现大规模接入,但由于受环境影响,其输出功率波动较大,在光伏并网时会给配电网带来诸多不利。为此,提出了一种基于混合储能的自适应光伏功率平抑策略,通过协调蓄电池和超级电容的功率分配,充分发挥了超级电容响应速度快的特点。同时,平抑策略中的荷电状态(state of charge,SOC)反馈功能兼顾了储能的SOC变化情况,使其具有较强的自适应能力,实现了储能的最优化利用。最后,通过分析验证了所提策略的可行性和有效性。  相似文献   

4.
针对风电出力的随机性、波动性对电力系统的安全稳定运行产生了极大影响,提出了基于自适应滑动平均算法与集合经验模态分解相结合的混合储能系统平滑风电出力波动方法。首先利用自适应滑动平均算法将风电输出功率分解,得到满足并网条件的并网功率和混合储能功率;其次将混合储能功率进行集合经验模态分解,得到一系列频率由高到低依次排列的本征模态分量;然后根据蓄电池与超级电容的介质频率特性,将混合储能功率分配给蓄电池与超级电容;最后针对储能元件易出现过充过放的弊端,对储能元件的荷电状态进行实时监测,利用模糊优化控制对蓄电池与超级电容的功率指令进行实时修正。仿真结果表明,所提策略不仅能自适应地实现风电功率的分解,使得并网功率满足风电输出功率最大波动值的限值要求,还可确保储能元件的荷电状态工作在正常范围内,避免过充过放的发生。  相似文献   

5.
一种适用于微电网混合储能系统的功率分配策略   总被引:1,自引:0,他引:1  
混合储能系统同时具有功率型和能量型储能设备的优点,适用于微电网中平抑波动性功率。采用直流母线并联方式的超级电容器和蓄电池混合储能系统,由蓄电池储能单元稳定直流母线电压,超级电容器储能单元跟踪参考电流,从而达到功率的动态分配。在混合储能系统功率损耗模型的基础上,提出一种兼顾超级电容器荷电状态和储能系统损耗的功率分配策略。将该策略用于光伏发电系统输出功率平抑,仿真结果验证了所提控制策略的有效性。  相似文献   

6.
为最大程度地平抑风电输出功率的波动,针对超级电容和蓄电池不同的功率和容量特性,提出分散–集中二次滤波控制策略。在分散侧用超级电容平抑单台电源输出功率的高频分量,在集中侧用蓄电池平抑汇流母线功率的低频分量;采用双时间常数调节算法实时再分配平抑外功率,制定最优的平抑目标,使储能介质维持在良好的荷电状态。算例分析表明,所提出的策略能实时调节储能介质的荷电状态,很好地降低可再生能源的波动幅度。  相似文献   

7.
针对独立直流微网中混合储能单元使用寿命问题,基于电压下垂控制的混合储能单元控制策略,提出了混合储能系统控制策略的改进措施。首先采用基于超级电容荷电状态的稳态功率修正策略,使超级电容在工作一段时间后荷电状态能够恢复至初始额定值,避免超级电容过充或者过放。其次,针对电池使用寿命问题,提出基于混合储能荷电状态的能量管理策略,以达到延长电池使用寿命的目的。最后通过Matlab/Simulink仿真分析,证明该方法在光伏输出功率改变条件下可有效延长电池与超级电容使用寿命。  相似文献   

8.
针对混合储能系统在平抑光伏波动以及负荷投切时荷电状态(SOC)易越限问题,提出一种基于混合储能SOC的多模式协调控制策略。在传统低通滤波功率分配的基础上,提出一种基于超级电容荷电状态的动态功率修正策略,使超级电容出力后SOC向安全状态恢复;同时,为避免蓄电池频繁切换充放电状态,在其响应环节加入优化后的延时控制。此外,根据光伏出力情况、混合储能SOC,设计出满足直流微网系统动态平衡的六种运行模式,实时调节各储能单元出力情况。在MATLAB/Simulink中搭建了光伏直流微网混合储能系统仿真模型,仿真结果表明所提策略在各工况下均能稳定运行,有效延长了储能介质使用寿命。  相似文献   

9.
采用蓄电池-超级电容混合储能系统来平抑风电功率波动,实现风电平滑并网。首先,针对风功率非线性、不稳定的波动特性,结合1min/10min两个时间尺度的风电场输出功率变化最大限值,采用基于集合经验模态分解(EEMD)方法,实现风功率的自适应分解,得到风电并网功率和混合储能系统充、放电功率指令;其次,根据蓄电池和超级电容的出力需求,结合储能设备荷电状态(SOC)等约束条件,提出混合储能系统能量管理协调控制算法,实现储能系统内部功率相互流动;最后,基于风电历史数据,验证所提方法的有效性和合理性。  相似文献   

10.
针对光储一体发电系统中蓄电池-超级电容混合储能系统的功率动态分配问题,提出一种基于模糊控制的混合储能系统可变滤波时间常数功率分配方法.该方法考虑超级电容的荷电状态和混合储能系统功率需求的变化率,利用模糊控制对低通滤波时间常数进行动态调节,最大化利用超级电容在暂态过程中功率快速响应特性,使蓄电池功率响应更加平滑,减少对蓄电池的冲击,提升混合储能系统的整体性能.仿真结果表明,该方法能根据超级电容荷电状态和功率需求变化率,充分发挥超级电容功率型和蓄电池能量型的功能特性,有效提高光储一体发电系统的鲁棒性.  相似文献   

11.
针对多源储结构的独立直流微电网,提出考虑多储能系统功率分配的独立直流微电网协调控制策略,以实现源储能源利用率最大化与多储能系统间功率合理分配两方面的平衡控制,提升微网持续供电能力。根据直流母线电压信号将微网系统运行划分为5种工作模式,以协调源储运行,保证光伏能源利用率最大化及储能系统出力充足。同时,直流微电网工作模式切换过程中源储控制器保持不变,并根据当前运行状态自动调节自身运行曲线,维持系统功率平衡和母线电压稳定。其中,基于自适应功率控制的光伏系统控制方法根据母线电压自动调节光伏系统运行点追踪或偏离最大功率点,实现最大功率点跟踪(maximum power point tracking ,MPPT)模式与降功率模式间的平滑切换。其次,基于荷电状态(state of charge,SOC)的自适应功率下垂控制器根据储能单元自身SOC调节其下垂曲线,实现系统功率在多储能单元间的动态分配,避免过充过放。最后,通过搭建Matlab /Simulink 仿真模型,验证了所提方法的有效性。  相似文献   

12.
微电网中的微电源和负载具有波动性和随机性,故储能系统是维持微电网安全可靠运行并改善电能质量的关键,蓄电池与超级电容器混合使用可以发挥蓄电池电池能量密度大和超级电容器功率密度大,充放电速度快的优势,提高微电网储能系统性能。提出了一种基于互补PWM小信号模型,并分别给蓄电池和超级电容器设计了控制方案,蓄电池采用单电流环很好的平抑了功率的低频波动,超级电容器采用带前馈的双环控制,平抑功率的高频波动,并有效的维持了直流母线电压的稳定。仿真结果证明了所提出的控制策略的正确性。  相似文献   

13.
谢超  张建文  李星 《电测与仪表》2019,56(20):124-129
为实现风电平滑并网,采用蓄电池和超级电容组成的混合储能系统平抑风电出力波动。本文提出了基于集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)与模糊控制的混合储能控制策略。首先,利用集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)对风电输出功率信号进行分解。根据低、高频固有模态函数(IMF)能量的明显差异确定EEMD滤波阶次。其次,按照风电并网波动率的限制要求,对滤波阶次进行调整,将符合波动率要求的低频分量并网,高频分量分配给混合储能系统。然后,对蓄电池和超级电容的实时荷电状态(State of Charge,SOC)进行判断,利用模糊控制对超级电容的功率指令进行优化,防止超级电容过充和过放。仿真实例表明,所提策略既能实现风电输出功率的合理分配,有效的抑制风电波动,又能使混合储能系统的SOC稳定在合理区间,提高储能系统的使用寿命。  相似文献   

14.
雷磊  封阿明  陶正华  郭巍 《现代电力》2020,37(5):544-550
针对输入电压波动导致大功率超级电容充电装置输出范围窄、控制精度不高的问题,研究了一种基于超级电容的宽输入范围DC/DC变换器。该变换器采用Buck-移相全桥变换器的两级变换,同时具备宽电压调节范围和负载移相全桥变换器软开关的特点。通过分析超级电容的等效电路模型,对直流母线电压控制提出了基于功率环的电压电流双环控制方法,可以快速跟随输入电压变化,保持母线电流平稳,并在Matlab/Simulink平台上搭建仿真模型进行分析。最后,通过在白俄罗斯明斯克公交系统300 kW充电桩上的应用,验证了该设计的可行性。  相似文献   

15.
胡石阳  刘国荣  金楠  李晋 《电源学报》2020,18(5):140-147
传统直流储能系统中电容器荷电状态(state of charge, SOC)的变化会导致直流变换器两端电压不匹配,使得功率器件无法处在软开关状态,从而增加了开关损耗。通过分析软开关控制与电容器SOC之间的关系,本文提出一种双有源桥(dual active bridge, DAB)直流储能系统软开关优化控制,实现储能系统在充放电过程中,各功率器件始终处在软开关状态,维持直流母线电压稳定,降低功率损耗。该方法将储能电容SOC变化引入DAB移相控制,确定SOC与移相角的定量关系,使直流变换器功率器件满足软开关条件。根据直流母线电压及储能系统充放电特性,设计恒压、恒流充电和恒压、恒功率放电控制方法。仿真与实验结果验证了所设计软开关优化控制方法的有效性。  相似文献   

16.
并网直流微源的有效管理和控制是保证直流微网稳定运行的关键。下垂控制是直流微网中常用的管理和控制直流微源的一种方法,能够有效实现微源间功率分配。但传统的基于荷电状态(State of Charge, SOC)的下垂控制存在随着SOC减小直流母线电压跌落逐渐加剧的缺陷,针对该缺陷提出了一种基于SOC的改进下垂控制策略。首先给出了根据母线电压波动的下垂系数调整律,当母线电压跌落时会自动减小下垂系数。随后建立了以输出电容的电压和电流为状态量的系统控制模型,设计了电流内环电压外环的双环PI控制器。最后搭建了Matlab/Simulink仿真模型,对比仿真了四种不同因素影响下系统的控制性能。仿真表明所提出的改进下垂控制很好地实现了母线电压稳定和各微源功率按其SOC合理分配,并具有较强的抗负载变化能力。  相似文献   

17.
李辉  黄瑶妹  马飞 《中国电力》2017,50(1):158-163
为优化混合储能系统运行状态,提出了一种新型混合储能分层协调控制策略,包括上层能量管理与下层混合储能控制。上层能量管理层根据微电网母线电压、频率以及混合储能系统综合荷电状态(SOCHESS),利用模糊逻辑算法优化混合储能系统的充放电功率,使得储能设备的荷电状态维持在合理范围。下层混合储能控制层在低通滤波器的基础上根据磷酸铁锂电池和超级电容器各自的SOC,建立分配功率修正算法,优化储能单元的SOC状态。仿真实验证明,所提出的基于荷电状态SOC的分层协调控制,有效地降低了混合储能的SOC的变化范围,防止储能设备的过充或过放。  相似文献   

18.
针对光伏新能源功率输出随机性强、波动性大的缺陷,提出了基于低通滤波原理的能量型电解槽制氢和密度型超级电容器共同作为储能设备的功率分配控制策略,该策略能够有效地利用电解槽和超级电容器能量优势互补的特性来平抑直流母线功率波动。同时对其功率分配初始参考值进行修正以满足电解槽额定出力和超级电容器荷电状态上下限等约束条件,从而保证混合系统向电网可靠供电。通过PSCAD/EMTDC仿真平台对系统建模,仿真分析结果验证了所述控制策略的有效性。  相似文献   

19.
为了提高动力锂电池的使用效能和整车性能,需要准确估计动力锂电池的荷电状态(SOC),在研究分析常用SOC估计方法的基础上,根据开路电压法和卡尔曼滤波算法的特性,引入T-S模糊模型,建立了基于模糊优化决策的锂电池SOC估计方法,通过仿真验证,可有效提高锂电池SOC估计的精度。  相似文献   

20.
针对湖北黄石地区楼宇建筑直流微电网孤岛运行场景,提出一种光伏和储能电池的协调控制策略。基于直流微电网系统的实时状态,根据直流母线电压数值对微电网的运行模式进行划分,并设置变流器动作阈值,微电网内的各变流器根据母线电压所处的区间范围,执行相应的控制策略,满足微电网的能量平衡及电压稳定性需求。考虑微电网内部储能电池状态的一致性要求,针对电池变流器提出一种基于电池荷电状态(State of Charge,SOC)的协调控制策略,在电池的充放电过程中,根据不同电池组之间的容量差异进行功率分配,避免相同的充放电效率导致过充或过放现象。最后通过Matlab/Simulink对所提控制策略进行仿真验证分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号