首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
This paper investigates the problem of adaptive output‐feedback neural network (NN) control for a class of switched pure‐feedback uncertain nonlinear systems. A switched observer is first constructed to estimate the unmeasurable states. Next, with the help of an NN to approximate the unknown nonlinear terms, a switched small‐gain technique‐based adaptive output‐feedback NN control scheme is developed by exploiting the backstepping recursive design scheme, input‐to‐state stability analysis, the common Lyapunov function method, and the average dwell time (ADT) method. In the recursive design, the difficulty of constructing an overall Lyapunov function for the switched closed‐loop system is dealt with by decomposing the switched closed‐loop system into two interconnected switched systems and constructing two Lyapunov functions for two interconnected switched systems, respectively. The proposed controllers for individual subsystems guarantee that all signals in the closed‐loop system are semiglobally, uniformly, and ultimately bounded under a class of switching signals with ADT, and finally, two examples illustrate the effectiveness of theoretical results, which include a switched RLC circuit system.  相似文献   

2.
This paper presents an adaptive fuzzy control approach of multiple‐input–multiple‐output (MIMO) switched uncertain systems, which involve time‐varying full state constraints (TFSCs) and unknown disturbances. In the design procedure, the fuzzy logic systems are adopted to approximate the unknown functions in the systems. The adaptive fuzzy controller is set up by backstepping technique. According to the tangent barrier Lyapunov function (BLF‐Tan), a novel adaptive MIMO switched nonlinear control algorithm is designed. Under the rule of arbitrary switchings and the proposed control laws, it is demonstrated that all signals in the resulted system are semiglobally uniformly ultimately bounded (SGUUB) and the tracking error converges to a small neighborhood of zero with TFSCs. Furthermore, the simulation example validates the effectiveness of presented control strategy.  相似文献   

3.
This paper addresses the issue of the adaptive output tracking control for switched nonlinear systems with uncertain parameters. The solvability of the tracking control problem for each subsystem is not necessary to hold. Individual update laws corresponding to different unknown parameters are adopted to reduce the conservativeness produced from the adoption of a common undated law. By means of the dual design of the adaptive controllers and a state‐dependent switching law using multiple storage functions technique, several conditions are obtained under which the adaptive output tracking control problem for switched nonlinear systems is solvable. Finally, an example shows the effectiveness of the proposed method.  相似文献   

4.
This paper is concerned with the adaptive disturbance attenuation control problem for a class of switched polynomial nonlinear systems. At first, a parameterized controller is designed to transform the switched polynomial nonlinear systems into switched Hamiltonian systems with polynomial structure. Then, combining with the solve‐parameter algorithm described in this paper, a mixed adaptive passivity and H2/H control method is devoted. Comparing with the existing results, the obtained adaptive disturbance attenuation controller has better performance. Finally, a numerical example is given to illustrate the effectiveness of the proposed methods.  相似文献   

5.
This paper investigates the adaptive quasi‐passification‐based stabilization problem for a class of switched nonlinearly parameterized systems via average dwell time method. First, when all the subsystems have any same relative degree, the global practical stability is achieved by combining the recursive feedback quasi‐passification design technique with a switched adaptive control technique. The states and parameter estimation errors converge to the ball whose sizes can be reduced by choosing appropriate design parameters. Second, when the system states are unavailable for measurements, adaptive output feedback controllers are designed to stabilize the system using quasi‐passivity. The proposed output feedback controllers do not depend on any state observer. Finally, three examples show the effectiveness of the proposed methods.  相似文献   

6.
This paper studies adaptive control of switched nonlinearly parameterized cascade systems. No solvability of the adaptive control problem for subsystems is required. By exploiting the multiple Lyapunov functions method and the parameter separation technique and the tool of adding a power integrator, we develop a new switched adaptive control approach for the explicit construction of adaptive controllers of subsystems and a proper switching law that solves the adaptive stabilization problem. A key feature of the proposed adaptive controllers is its switched property, namely, each subsystem has its individual update law. A two‐inverted pendulum as a practical example is also provided to demonstrate the effectiveness of the proposed design method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, the problem of model reference adaptive control for nonlinear switched systems with parametric uncertainties is investigated. Asynchronous switching between subsystems and adaptive controllers is also considered. Firstly, a state feedback adaptive controller is designed. Then, sufficient conditions ensuring the global practical stability of the error switched system with average dwell time are proposed. The boundedness of all signals in the closed‐loop system is guaranteed by the proposed adaptive controller. Finally, a practical example is given to demonstrate the validity of the main results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
This paper investigates the global adaptive finite‐time stabilization of a class of switched nonlinear systems, whose subsystems are all in p (p≤1) normal form with unknown control coefficients and parametric uncertainties. The restrictions on the power orders and the nonlinear perturbations are relaxed. By using the parameter separation technique, the uncertain parameters are separated from nonlinear functions. A systematic design procedure for a common state feedback controller and a switching adaptive law is presented by employing the backstepping methodology. It is proved that the closed‐loop system is finite‐time stable under arbitrary switching by utilizing the common Lyapunov function. Finally, with the application to finite‐time control of chemical reactor systems, the effectiveness of the proposed method is demonstrated. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
The adaptive state tracking problem of switched systems is studied in this paper. The desirable state trajectory is generated by a switched reference model. First, a condition for asymptotical hyperstability of switched systems is proposed and a switching law is designed, which is a generalization of the classical hyperstability condition for non‐switched systems. Then, the result is applied to uncertain switched systems to achieve state tracking. An individual adaptive law is designed for each subsystem such that the Popov inequality is satisfied. Asymptotical state tracking is achieved under non‐persistent exciting input when the error system switches in a certain way. The result is demonstrated by a numerical example and a practical system of Highly Maneuverable Aircraft Technology vehicle, respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
This paper considers the problem of adaptive fuzzy output‐feedback tracking control for a class of switched stochastic nonlinear systems in pure‐feedback form. Unknown nonlinear functions and unmeasurable states are taken into account. Fuzzy logic systems are used to approximate the unknown nonlinear functions, and a fuzzy observer is designed to estimate the immeasurable states. Based on these methods, an adaptive fuzzy output‐feedback control scheme is developed by combining the backstepping recursive design technique and the common Lyapunov function approach. It is shown that all the signals in the closed‐loop system are semiglobally uniformly ultimately bounded in mean square in the sense of probability, and the observer errors and tracking errors can be regulated to a small neighborhood of the origin by choosing appropriate parameters. Finally, a simulation result is provided to show the effectiveness of the proposed control method.  相似文献   

11.
This paper focuses on the problem of active fault‐tolerant control for switched systems with time delay. By utilizing the fault diagnosis observer, an adaptive fault estimate algorithm is proposed, which can estimate the fault signal fast and exactly. Meanwhile, a delay‐dependent criterion is obtained with the purpose of reducing the conservatism of the adaptive observer design. Based on the fault estimation information, an observer‐based fault‐tolerant controller is designed to guarantee the stability of the closed‐loop system. In terms of linear matrix inequality, sufficient conditions are derived for the existence of the adaptive observer and fault‐tolerant controller. Finally, a numerical example is included to illustrate the efficiency of the proposed approach. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
This paper addresses the problem of asymptotic tracking for switched linear systems with parametric uncertainties and dwell‐time switching, when input measurements are quantized due to the presence of a communication network closing the control loop. The problem is solved via a dynamic quantizer with dynamic offset that, embedded in a model reference adaptive control framework, allows the design of the adaptive adjustments for the control parameters and for the dynamic range and dynamic offset of the quantizer. The overall design is carried out via a Lyapunov‐based zooming procedure, whose main feature is overcoming the need for zooming out at every switching instant, in order to compensate for the possible increment of the Lyapunov function at the switching instants. It is proven analytically that the resulting adjustments guarantee asymptotic state tracking. The proposed quantized adaptive control is applied to the piecewise linear model of the NASA Generic Transport Model aircraft linearized at multiple operating points.  相似文献   

13.
In this article, the adaptive finite-time fault-tolerant control problem is considered for a class of switched nonlinear systems in nonstrict-feedback form with actuator fault. The problem of finite-time fault-tolerant control is solved by introducing a finite-time performance function. Meanwhile, the completely unknown nonlinear functions exist in the switched system are identified by the neural networks. Based on the common Lyapunov function method with adaptive backstepping technique, the finite-time fault-tolerant controller is designed. The proposed control strategy can guarantee that the tracking error converges to a prescribed zone at a finite-time and all system variables remain semiglobally practical finite-time stable. Numerical examples are offered to verify the feasibility of the theoretical result.  相似文献   

14.
Based on tensor space, a new performance assessment approach is proposed for switched control systems in this paper. Switched control system is widely existing in industrial processes, especially in safety‐important processes where the systems controlled may be switched by protection logic during accident. Clearly, bad performance of control and protection strategies will eventually drive the system to a dangerous condition. To treat this problem, one may set up a performance assessment procedure for the switched control systems using multiple model method, where performance is evaluated through assessment of every individual submodel of the switched system. Obviously, this approach ignores interaction nature between control algorithm and protection strategy. The proposed method can capture the interaction nature of control and protection systems. In the tensor space, the interacting relation of control and protection systems can be synthetically represented by adding the logical switching space. Specifically, the tensor space modeling representation for switched systems has been developed, which can actually model the high coupling interaction of control and protection systems. The data‐driven tensor space algorithm based on higher‐order singular value decomposition has also been developed to assess the performance of switched control systems. By using orthogonal projection in tensor space extended from the matrix space, prediction error approach has been employed to obtain the optimal prediction error variance being as the control performance benchmark for performance assessment. Finally, numerical simulation examples are presented to illustrate the rationality and effectiveness of tensor space approach by comparing with the multiple model approach. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
This article is concerned with the adaptive output-feedback control of switched nonstrict feedback nonlinear systems. By introducing a novel error surface, an adaptive control strategy is proposed for the general case where the nonlinear functions and the control gain functions are unknown, and the states are unmeasurable. The considered switched nonlinear system contains unknown actuator failures, which are modeled as both loss of effectiveness and lock-in-place. In order to improve the transient performance in the presence of unknown actuator failures, the prescribed performance approach is used. The “explosion of complexity” problem is avoided through using low-pass filters. The stability of the closed-loop system under arbitrary switching is shown using Lyapunov stability theory, based on which, the tracking error is shown to converge to a small residual set with the prescribed performance bounds. The advantages of the proposed technique are verified through simulations of two numerical and practical examples.  相似文献   

16.
Most adaptive control algorithms for nonlinear discrete time systems become invalid when the controlled systems have non‐minimum phase properties and large uncertainties. In this paper, an intelligent control method using multiple models and neural networks (NN) is developed to deal with those problems. The proposed control method includes a set of fixed controllers, a re‐initialized neural network (NN) adaptive controller and a free‐running NN adaptive controller. The bounded‐input‐bounded‐output (BIBO) stability and performance convergence of the system are guaranteed by the free‐running adaptive controller, while the multiple fixed controllers and the re‐initialized adaptive controller are used to improve the transient response. Simulation results are presented to demonstrate the effectiveness of the proposed method. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
This paper studies an observer‐based adaptive fuzzy control problem for stochastic nonlinear systems in nonstrict‐feedback form. The unknown backlash‐like hysteresis is considered in the systems. In the design process, the unknown nonlinearities and unavailable state variables are tackled by introducing the fuzzy logic systems and constructing a fuzzy observer, respectively. By using adaptive backstepping technique with dynamic surface control technique, an adaptive fuzzy control algorithm is developed. For the closed‐loop system, the proposed controller can guarantee all the signals are 4‐moment semiglobally uniformly ultimately bounded. Finally, simulation results further show the effectiveness of the presented control scheme.  相似文献   

18.
This article considers the issue of fuzzy adaptive dynamic programming control of nonlinear switched systems with arbitrary switchings and unknown uncertain functions and actuator hysteresis nonlinearities. The whole control approach is made of switching feedforward controller and optimal switching feedback controller. To get over the hardness of arbitrary switching structure and the issue of “explosion of complexity”, the common Lyapunov function theory and dynamic surface control method are utilized in the recursive design technique. By using fuzzy logic systems to model unknown inner dynamics and unknown cost functions, a novel fuzzy adaptive optimal switching control strategy is developed. Meanwhile, uniformly ultimately boundedness of all weights in the controlled systems are proved by the proposed control method, and the tracking performance is guaranteed in an optimal manner. Subsequently, a numerical simulation study is used to test the effectiveness of the presented control strategy.  相似文献   

19.
At the present time, there is a great deal of interest in the adaptive control of systems with rapidly varying parameters. Such problems arise in different forms and in many disciplines including finance, sociology, biology, and engineering. In general, these problems are intractable mathematically and the time variations have to be classified in some form to obtain rigorous results. In this paper, we consider the adaptive identification and control of linear systems with periodically varying parameters (referred to as linear time‐varying periodic (LTP) systems). The class of systems with known periodic parameters has been investigated widely since the pioneering work of Floquet and lends itself to rigorous mathematical analysis. However, very little was known until the early years of the last decade concerning the adaptive control of such systems. The problem was introduced by Xu and explored in detail by Narendra and Zhiling in 2006 and 2009, respectively. In 2012, a new method was introduced in adaptive control by Han and Narendra and is referred to as second‐level adaptation. In this paper, the adaptive identification and control of LTP systems using second‐level adaptation is discussed.  相似文献   

20.
This article investigates the novel finite time adaptive neural fault-tolerant controller (FTC) for strict-feedback switched stochastic systems under arbitrary switching signals and takes into actuator failures including loss of effectiveness faults and bias faults consideration concurrently. Neural networks are utilized to approximate the unknown external disturbance and internal dynamics. On the basis of Itô differential equation and backstepping technique, an adaptive neural finite time FTC method is put forward. It is attested that the closed-loop systems are semiglobal practical finite time stable in probability and the tracking effects are great. Finally, to further demonstrate the high efficiency of proposed control method, two simulation examples are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号