首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
CLLLC谐振变换器存在频率变化范围较大、升压范围较小的问题,不利于元器件设计及优化.针对CLLLC谐振变换器提出一种混合式升压控制策略,减小了频率变化范围,并使升压范围在变频控制的基础上进一步扩大,在实现软开关的同时能适应更宽范围的电压输入,结构可靠、易于实现.利用时域分析法,分析了混合控制下CLLLC谐振变换器的升...  相似文献   

2.
针对CLLLC谐振变换器提出了一种基于分级寻优模型预测的混合控制策略。通过结合变频控制与移相控制的优点,在实现软开关的同时,能拓宽变换器的电压增益范围。该策略不仅减小了普通有限集模型预测控制(MPC)策略的计算量,还改善了PI控制存在的电压超调大和动态响应慢的问题,在稳态性能相近的情况下提升了变换器系统的动态性能。最后通过Matlab/Simulink仿真和实验证明了分级寻优MPC策略的有效性。  相似文献   

3.
针对CLLLC谐振式双向DC/DC变换器的模型复杂、环路设计困难以及动态特性慢等问题,提出了一种基于低阶等效模型的广义预测电压控制GPVC(generalized predictive voltage control)算法.首先通过扫频方法拟合得到变换器低阶等效模型;其次设计一种基于模型的GPVC策略,构建成本函数;最后,搭建实验样机实现预测电压控制算法.实验结果证明了所提控制策略的有效性,在多种工况下相比传统PI控制方法具有更优的稳态性、动态性和鲁棒性.  相似文献   

4.
王爱玲 《电源学报》2022,20(3):98-104
间歇控制可提高LLC谐振变换器的轻载效率,但存在效率提升效果有限和输出电压纹波大的问题。为解决此问题,提出了一种改进型间歇控制方法。该控制方法在工作时间内将驱动脉冲数固定为3个以获得最优运行轨迹,而关断时间的长短则通过电压环自动调节。所提方法使得变换器在能量传输阶段始终运行在最佳运行轨迹上,从而进一步提高了轻载效率,减少工作脉冲数,有效降低输出电压纹波。对改进型间歇控制方法的原理分析、参数设计及具体实现方式进行介绍,并研制了一台300 W样机。实验结果表明,样机在间歇模式运行段内效率平均提升5.2%。  相似文献   

5.
针对CLLLC谐振变换器存在脉冲频率调制(PFM)的电压增益范围不足、移相调制(PSM) 下只能实现降 压功能、负载投切扰动对输出电压影响较大问题,提出了一种可分别调节开关频率与移相比的变频移相控制方法.该 方法可以根据输入电压范围自由切换控制模态,实现宽电压范围软开关;通过引入线性自抗扰控制(LADRC) 策略, 减小了负载投切扰动对输出电压的影响,并与传统PI算法进行了对比.最后,通过PLECS仿真验证了理论分析的正 确性和控制策略的有效性.  相似文献   

6.
7.
MOSFET作为CLLLC谐振变换器的核心器件,其散热设计会影响CLLLC谐振变换器能否安全可靠运行.针对5 kW的CLLLC谐振变换器,分析了散热器的表面温度与功率器件结温之间的关系.在此基础上,探讨了散热器表面温度与与其几何尺寸之间的关联程度,并对散热器肋片数、肋片厚度、肋片高度、风扇的风量等进行了优化设计.介绍了...  相似文献   

8.
针对CLLLC谐振变换器存在脉冲频率调制的电压增益范围不足、相移调制的效率较低的问题,提出了一种可同时调节开关管占空比与开关频率的变频移相混合控制方法.该方法可以根据输入电压范围与负载功率变化范围自由切换混合控制模态以实现宽范围软开关与高运行效率,具有极高的调节自由度,且通过移相控制降低了启动时的冲击电流从而实现了软启...  相似文献   

9.
串联谐振变换器的最优轨迹控制   总被引:1,自引:1,他引:0  
介绍了串联谐振变换器的最优轨迹控制法。首先分析了串联谐振变换器的4种工作模式,然后以谐振电感电流和谐振电容电压为状态变量,基于状态平面分析法推导了系统的最优轨迹控制法则。控制目的是使这两个状态变量跟踪他们期望的稳态轨迹,从而减少暂态振荡并在极短时间内达到稳态。实验结果表明,最优轨迹控制系统的暂态性能非常好。  相似文献   

10.
CLLLC谐振式双向全桥DC-DC变换器   总被引:2,自引:0,他引:2  
动态特性与工作效率是双向DC/DC变换器的关键性能指标。本文详细分析了CLLLC谐振式双向全桥DC/DC变换器拓扑原理和工作过程,设计了变换器原边与副边谐振元件参数;同时,提出了一种基于输入电压前馈和输出电压反馈的闭环控制策略,采用了脉冲频率调制方式产生驱动波形。最后,在Matlab环境下进行了变换器的建模与仿真。结果表明,设计的CLLLC谐振式双向全桥DC/DC变换器实现了变换器的谐振软开关特性,具有较好的动态性能和较高的工作效率,从而验证了控制策略的可行性和参数设计的正确性。  相似文献   

11.
许景慧  王跃  李凯 《电气传动》2021,51(14):13-17,22
CLLLC谐振式直流变换器因具有功率双向传输、电压等级转换效率高、正反向运行特性高度一致等很多优点,被应用在电动汽车直流充电桩.但是由于谐振元件个数较多且过程分析复杂,关于谐振回路参数的选择目前的研究缺少一种明确详细的设计方法.基于基波等效法先建模分析了各参数对变换器运行特性的影响以及软开关实现条件,然后提出了步骤详细...  相似文献   

12.
基于断续模式串并联(Discontinuous Current Mode LCC,简称DCM LCC)谐振变换器的数学模型,提出了LCC谐振变换器在DCM下的优化控制方法的数字化控制程序实现,使原来断续的谐振电流达到了临界断续的工作模态。根据LCC谐振变换器数学模型中关于临界断续频率的公式,利用现代高速数字化控制芯片,实时采样电路的运行状态,在此基础上以临界断续频率为上限,调整电路工作频率,实现了优化控制方式下的调频调压。在搭建的实验样机上完成了优化控制方式的实验,其结果验证了控制方法的可行性。  相似文献   

13.
GaN器件的LLC谐振变换器的优化设计   总被引:6,自引:6,他引:0       下载免费PDF全文
首先介绍了LLC谐振变换器的工作原理,详细分析了基于增强型氮化镓(e Ga N)场效应晶体管的LLC谐振变换器的开关过程。分析结果表明,通过调节死区时间可以避免Ga N晶体管的反向导通,从而减小损耗;通过减小高频功率回路电感可以减小功率回路的振荡。再对死区时间和功率回路布线分别进行了优化,由于Ga N晶体管栅源电压安全裕量很小,为确保器件安全,对驱动回路布线进行优化;最后设计了1台输入电压为48 V、输出电压为12 V、输出功率为100 W、开关频率为1 MHz的LLC实验样机,并进行了实验验证。实验结果表明,高频功率回路电感从5.6 n H降为0.4 n H时,下管关断时的漏源电压超调由15%下降到6.7%,另外驱动功率回路采用单层布线带屏蔽层的布线方式后,开关管的驱动电压几乎没有振荡。  相似文献   

14.
含变压器的隔离型变换器易受到寄生电容的影响,降低系统运行的稳定性。针对LLC谐振变换器,建立含变压器寄生参数的等效电路模型,推导电压增益公式。对比无寄生参数和含寄生参数的电压增益曲线,分析寄生电容对选取电感比及其品质因数所产生的影响。在设计参数时考虑寄生电容的影响,分析开关管实现ZVS的条件,推导电感比的计算方法以及品质因数的取值范围。优化设计电感比、品质因数,进而优化各谐振参数。搭建实验样机,验证该优化方法的正确性和可行性。  相似文献   

15.
待机控制是目前国内外电力电子行业研究的热点之一。PWM型变换器的待机控制技术已较为成熟,而对谐振型变换器待机控制的研究却较少。针对Class-E谐振变换器在小功率充电领域的应用,提出了适用的待机控制设计方法。通过采用间歇式待机控制模式、低功耗辅助电源电路和低功耗控制芯片,使变换器的待机功耗降到了0.3W以下,达到了业界0.3W的待机功耗要求。同时在交流90~265V的全范围输入时,变换器的输出电压脉动都小于5%。  相似文献   

16.
三元件串联LLC谐振变流器的优化设计策略   总被引:4,自引:0,他引:4  
三元件串联LLC谐振变流器是目前世界上最受关注的直流/直流变流器之一.但只有通过合理的优化设计才能充分发挥其在变换效率方面的优势.在对LLC谐振变流器进行理论分析和损耗计算的基础上,从品质因数Q和变压器励磁电感量与谐振电感量比值m的角度提出一种在工业应用中普遍适用的效率优化设计策略.最后设计研制了一台LLC谐振变流器样机,其较高的变换效率证明了该优化设计策略的正确性和有效性.  相似文献   

17.
同步控制双向LLC谐振变换器   总被引:1,自引:0,他引:1  
本文提出了一种同步控制的双向LLC谐振变换器。为使变换器在正向、反向工作时拓扑结构相同,在电路中增加了一个辅助电感。该辅助电感除了可以使双向LLC谐振变换器的双向工作特性完全对称外,还可以帮助开关管实现软开关。文章提出的双向LLC谐振变换器结构简单、控制方法易于实现。当变换器开关频率小于谐振频率时,所有开关管均可以实现零电压开通(ZVS);当变换器开关频率大于等于谐振频率时,软开关特性与传统LLC谐振变换器相同。因此变换器具有较高的效率,很适合应用于能量双向流动的场合。同步控制的双向LLC谐振变换器与传统二极管整流的单向LLC谐振变换器的工作特性存在差别,为了精确分析,文章提出了新的等效电路模型,并给出了同步控制双向LLC谐振变换器的电压增益公式和软开关条件。最后通过实验验证了理论分析的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号