首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
基于小波变换的谐波检测技术   总被引:3,自引:0,他引:3  
与基于无功功率理论和FFT算法等传统的谐波检测方法相比,基于小波变换的谐波检测方法在各方面都有一定的优势。结合国内外谐波检测技术的发展现状,分析基于Mallat算法、小波包变换、连续小波变换和复小波变换的谐波检测方法在电能质量检测分析上的应用。然后比较这几种小波变换算法在谐波检测中的优点和缺点,得出各自的特点和应用场合。最后,指出存在的问题并总结归纳解决方法,并且对今后小波变换在电力系统中的应用和研究重点提出了一些看法。  相似文献   

2.
谐波电流检测是电能质量分析和谐波补偿的关键技术,对小波变换在电网中的谐波电流检测原理进行了研究,根据小波变换的多分辨率分析,采用Mallat算法对电网谐波电流检测进行了仿真。结论表明,该方法具有较高的检测精度。  相似文献   

3.
基于MATLAB和小波变换的电力机车谐波电流分析   总被引:1,自引:0,他引:1  
介绍了基于小波变换的谐波检测方法,应用小波变换良好的时频局部化特性对电力机车牵引负荷进行谐波检测。以SS4G型电力机车为研究对象,利用最小描述长度准则确定了分析谐波的最佳小波函数,在MATLAB环境下进行小波算法编程。仿真结果表明:小波变换能快速准确地将信号中的基波和不同频率的谐波信号分解出来,实现谐波检测。  相似文献   

4.
基于单子带重构改进小波变换的电力系统谐波检测方法   总被引:6,自引:3,他引:3  
Mallat快速离散小波变换注重总体抗混叠和信号重建,忽略分解分量中的频率混叠抑制,在电力系统谐波检测中产生严重的频率混叠现象.虽然单子带重构小波变换提高了频率分辨率,但是分析结果仍存在一定程度的频率混叠.单子带重构改进小波变换算法,对信号进行分解与重构时,利用快速傅里叶变换(FFT)和快速傅里叶逆变换(IFFT)对各子带信号进行处理.该方法可以克服传统小波变换算法存在频率混叠现象的固有缺陷,仿真计算结果证明了该方法的有效性,为电力系统谐波、间谐波和时变谐波分量的精确检测提供了一种有效手段.  相似文献   

5.
有源电力滤波器(APF)是电能质量治理中用于抑制电网谐波电流的主要装置.APF系统中,谐波电流检测的快速性、准确性决定了系统补偿谐波电流的性能.针对此问题,在分析传统检测算法的基础上,采用基于小波变换的谐波电流检测方法,并且对所采用的检测算法在EMTDC/PSCAD中进行了仿真研究,同时搭建了150 A样机进行验证.实验结果表明,基于小波变换的谐波检测算法响应速度快,检测准确,APF样机谐波补偿满足要求.  相似文献   

6.
小波变换在电力系统谐波检测方面的应用   总被引:3,自引:1,他引:2  
针对傅里叶变换的谐波检测方法无法同时实现时-频变域分析这一缺点,提出了小波变换这一新方法对谐波进行分析。通过小波变换对电力系统中的谐波电流进行分解,得到信号的基波分量和高次谐波分量。针对电力系统中的突变信号,提出了基于小波变换的模极大值的奇异性检测方法,通过小波变换模的极值点在多尺度上的综合表现,来表示信号的突变特征,并通过仿真实例验证该算法的有效性。  相似文献   

7.
利用小波傅里叶变换的谐波与间谐波检测   总被引:5,自引:1,他引:5  
为有效检测快速变化和持续时间短的谐波与间谐波,分析了傅立叶变换检测谐波与间谐波的方法,并在此基础上探讨了利用小波变换进行检测的基本原理,提出了利用小波变换系数傅立叶变换幅值来分离谐波与间谐波的算法。该方法使用Morlet函数作为小波变换的小波基,根据小波变换系数傅里叶变换的幅频特性的突出点来检测谐波与间谐波的幅值与频率。仿真结果与理论分析表明,小波变换具有良好的时域与频域局部化特性,小波变换系数傅里叶变换幅值能有效检测谐波与间谐波,并在检测持续时间短的谐波与间谐波方面有很大优越性。  相似文献   

8.
基于频域内插抗混叠Shannon小波包的谐波检测研究   总被引:11,自引:0,他引:11  
杜天军  陈光 《电网技术》2005,29(11):14-19
提出了一种基于频域内插抗混叠Shannon小波包变换的谐波检测技术,首先分析了小波混叠的物理本质,然后选择分频严格的Shannon小波函数构造了频域内插方法,并利用线性调频Z变换进行快速求解,最后给出了小波包变换算法.仿真实验表明该方法可有效消除谐波检测中的小波混叠现象.  相似文献   

9.
基于小波变换的电力系统谐波分析   总被引:4,自引:0,他引:4  
电力系统的谐波是影响电能质量的重要因素,本文论述了基于小波变换的谐波检测方法,将含谐波的电信号进行基于多分辨思想的正交小波变换,解决了时频同时局部化的问题,并提出单子带重构算法,改善了Mallat算法中的频率折叠问题。由于小波分析在时、频域内良好的局部性,使之在谐波的跟踪检测、进而抑制谐波对电力系统的不良影响方面具有十分重要的意义。  相似文献   

10.
针对傅里叶算法检测间谐波时存在频谱泄漏和栅栏效应而导致检测精度不理想的问题,提出一种基于空间谱技术与连续小波变换相结合的间谐波检测算法.算法首先采用总体最小二乘-旋转不变子空间方法计算出谐波和间谐波分量的频率,再根据得到的频率确定连续小波变换的尺度因子,最后选择CMW小波对信号进行分解,由分解系数计算出各次间谐波分量的幅值和相位.仿真结果表明,该算法与傅里叶算法相比,不存在频谱泄漏和栅栏效应,有效提高了检测精度.  相似文献   

11.
非线性设备的大量使用和分布式电源的投入使得谐波污染愈加严重,文中提出了一种基于小波包变换的谐波检测方法,能对电能质量进行有效的分析。该方法在五层db40小波包变换的基础上,利用希尔伯特变换做移频运算,避免了中间频段小波混叠对检测精度造成的不利影响,并将各次谐波分量转移到精度较高的边频带进行小波包分解并重构信号,实现了各次谐波的高精度检测,同时通过Matlab工具对不同算法的仿真进行了比较和误差分析。仿真表明,相比于传统傅里叶变换,该算法具有高分辨率时频分析能力,能有效定位暂态干扰;与经典小波包变换相比,测量精度也有了较为明显的提高,实验结果一致显示了该算法的可行性和优越性。  相似文献   

12.
有源电力滤波器的谐波检测研究   总被引:1,自引:1,他引:0  
目前电网的谐波污染越来越严重,有源电力滤波器由于能实时抑制谐波,所以得到外界广泛关注。谐波电流检测的好坏对有源电力滤波器的性能有很大的影响,所以,本文就目前的几种谐波检测方法:基于傅里叶变换、基于瞬时无功功率理论、基于同步参考坐标系原理、基于频域分析的模拟带通或者带阻、基于采样保持原理、基于Fryze时域分析、基于小波变换、基于Prony/Kalman估计、基于神经网络的谐波检测法/自适应滤波理论谐波检测法进行了概括和比较分析。  相似文献   

13.
随着电力电子技术的广泛应用,谐波对电力系统的污染越来越严重,检测、分析和抑制谐波已经成为电力系统环境治理的重要课题。本文运用了小波变换和小波包变换对电网谐波的检测,仿真结果表明小波包变换能分离出更多频率的谐波信息,所以小波包变换能更有效的分析和抑制谐波的危害。  相似文献   

14.
基于小波变换的并联型电能质量控制器   总被引:1,自引:0,他引:1  
阐述了并联型电能质量控制器的运行机理和谐波抑制方法,提出了一种基于小波变换的并联型电能质量控制器的谐波检测方法,并利用重构技术进行了谐波补偿,还对基于小波变换和瞬时无功功率理论的两种谐波检测方法进行了对比研究。研究表明基于小波变换的检测方法实时性好。并联型电能质量控制器投入系统后电源电流总畸变率由26.94%下降为5.64%,表明并联型电能质量控制器可对电力系统中的谐波电流进行较好的补偿。  相似文献   

15.
小波分析在电力系统谐波相位检测中的应用   总被引:1,自引:0,他引:1  
为了防止电力系统谐波危害,保证系统安全运行,必须确切掌握电力系统中谐波的实际情况,正确分析电能质量.根据电网谐波中既存在稳态谐波分量又有暂态谐波分量的特点,依据小波分析具有对非平稳信号的分析和处理能力及多分辨率的特性,将小波变换理论应用于电网谐波检测中,提出了利用小波变换实现测量信号各次谐波相位的方法.仿真算例表明,小波多分辨分析法能够正确地提取电力系统的谐波信号,利用小波分解的尺度系数能得到各次谐波的精确相位,验证了该方法的可行性.  相似文献   

16.
基于傅里叶和小波变换的电网谐波分析   总被引:16,自引:1,他引:16  
正确提取电网谐波是进行电能质量分析的前提.根据电网谐波中既存在稳态谐波分量又有暂态谐波分量的特点,将傅里叶变换和小波变换方法结合起来对电网谐波进行分析,得出谐波分析的傅里叶小波综合算法.通过对单独傅里叶变换以及单独小波变换的对比分析,得知该文算法的优越性.同时通过对具体信号的仿真,验证了该算法的可行性.  相似文献   

17.
肖勇    李博    尹家悦    李波    胡珊珊    廖耀华   《陕西电力》2022,(1):101-107,114
通过研究小波变换中基函数选取和小波分解过程两个关键问题,针对小波变换在间谐波检测方面的应用,对比分析不同基函数的检测性能,重点分析小波变换与小波包变换对于稳态和暂态谐波的相位、幅值特性检测精度。仿真结果表明,小波包变换具有良好时频局部化特性能聚焦信号细节,选取dmey小波基函数的小波包分解方法可实现对电力系统中稳态或时变间谐波信号更精确的检测和分析,对于小波变换电力谐波检测中的实际应用具有指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号