首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An interleaved pulse‐width modulation (PWM) converter with less power switches is presented in this paper. The buck type of active clamp circuit is used to recycle the energy stored in the leakage inductor of a transformer. The zero voltage switching (ZVS) turn‐on of power switches is realized by the resonance during the transition interval of power switches. At the secondary side of transformers, two full‐wave rectifiers with dual‐output configuration are connected in parallel to reduce the current stresses of the secondary windings of transformers. In the proposed converter, power switches can accomplish two functions of the interleaved PWM modulation and active clamp feature at the same time. Therefore, the circuit components in the proposed converter are less than that of the conventional interleaved ZVS forward converter. The operation principle and system analysis of the proposed converter are provided in detail. Experimental results for a 280 W prototype operated at 100 kHz are provided to demonstrate the effectiveness of the proposed converter. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
An interleaved half‐bridge converter is presented for high input voltage application. The features of the proposed converter are zero voltage switching (ZVS) turn‐on for all active switches, ripple current reduction at output side, load current sharing and load voltage regulation. Two half‐bridge converters connected in series and two split capacitors are used to limit the voltage stress of each power switch at one‐half of input DC bus voltage. Thus, active switches with low voltage stress can be used at high input voltage application. On the other hand, the output sides of two half‐bridge converters are connected in parallel to share the load current and reduce the current stresses of the secondary windings and the rectifier diodes. Since two half‐bridge converters are operated with interleaved pulse‐width modulation (PWM), the output ripple current can partially cancel each other such that the resultant ripple current at output side is reduced and the size of output inductors can be reduced. In each half‐bridge converter, asymmetrical PWM scheme is used to regulate the output voltage. Based on the resonant behavior by the output capacitance of MOSFETs and the leakage inductance (or external inductance) of transformers, active switches can be turned on at ZVS during the transition interval. Thus, the switching losses of power MOSFETs are reduced. The proposed converter can be applied for high input voltage applications such as three‐phase 380‐V utility system. Finally, experiments based on a laboratory prototype with 960‐W rated power are provided to demonstrate the performance of proposed converter. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents an interleaved soft switching converter to achieve the features of zero voltage switching (ZVS) turn‐on for power switches, zero current switching turn‐off for rectifier diodes at full load, less transformer secondary winding with full‐wave diode rectifier topology, and balance primary currents with series connection of the transformer secondary windings. Two circuit modules are adopted in the proposed circuit, and they are operated with an interleaved pulse‐width modulation. Thus, ripple currents at the input and output sides are reduced. In each module, two ZVS converters using the same switches are operated with interleaved half switching cycle. The secondary windings of transformers are connected in series in order to ensure that the primary side currents are balanced. The full‐wave diode rectifier topology is used on the output side such that the voltage stress of rectifier diodes equals output voltage, rather than being two times the output voltage as in a conventional center‐tapped rectifier topology. Laboratory experiments with a 1000‐W prototype are provided to describe the effectiveness of the proposed converter. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, a new interleaved non‐isolated bidirectional dc–dc converter with capability of zero voltage switching and high voltage gain is proposed. In the proposed converter by using two coupled inductors and one capacitor, the voltage gain is extended. Moreover, by using only an auxiliary circuit that includes an inductor and two capacitors, the zero voltage switching (ZVS) of two used switches in the first phase of converter can be achieved. The ZVS operation of two used switches in the second phase is always obtained without using any extra auxiliary circuit. This converter similar to other interleaved converters has low input current ripple and low current stress on switches. In this paper, the proposed converter is analyzed in all operating modes, and also the voltage gain, required conditions for ZVS operation of switches, voltage and current stresses of all switches, and the value of input current ripple in both boost and buck operations are obtained. Finally, the accuracy performance of the proposed converter is verified through simulation results in EMTDC/PSCAD software. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
This paper presents a parallel zero‐voltage switching (ZVS) DC–DC converter with series‐connected transformers. In order to increase output power, two transformers connected in series are used in the proposed converter. Two buck‐type converters connected in parallel have the same switching devices. The primary windings of series‐connected transformers can achieve the balanced secondary winding currents. The current doubler rectifiers with ripple current cancellation are connected in parallel at the output side to reduce the current stress of the secondary winding. Thus, the current ripple on the output capacitor is reduced, and the size of the output choke and output capacitor are reduced. Only two switches are used in the proposed circuit instead of four switches in the conventional parallel ZVS converter to achieve ZVS and output current sharing. Therefore, the proposed converter has less power switches. The ZVS turn‐on is implemented during the commutation stage of two complementary switches such that the switching losses and thermal stresses on the semiconductors are reduced. Experimental results for a 528‐W (48 V/11 A) prototype are presented to prove the theoretical analysis and circuit performance. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
介绍了一种中心抽头全波整流有源箝位ZVS正激变换器的工作原理及主要参数计算。有源箝位电路由一个箝位开关管和箝位电容组成。变压器磁芯实现无损复位,励磁能量和漏感能量全部传递到负载,磁芯利用率高,功率开关管承受电压应力降低。通过变压器漏感与开关管输出电容的谐振,主开关管与箝位开关管都可以实现ZVS开通,提高了变换器工作效率。首先分析了变换器工作原理,然后给出了主要参数的计算方法,最后通过样机(48V输入,5V/20A输出)实验验证了该拓扑的高效性能。  相似文献   

7.
一种采用无源钳位电路的新型零电压零电流开关变换器   总被引:3,自引:5,他引:3  
针对传统的全桥移相PWM零电压零电流(ZVZCS)DC-DC变换器存在的缺点,提出了一种在副边采用无源钳位电路的新型全桥移相PWMZVZCSDC-DC变换器。这种变换器可以有效实现超前桥臂开关管的零电压开关,以及滞后桥臂开关管的零电流开关。这里详细分析了此变换器的工作原理以及变换器各个阶段的工作模态,并且分析了此变换器实现软开关的条件。理论分析表明这种变换器具有副边电压应力低,实现软开关负载范围大,辅助电路损耗小等优点。通过一台0.8kW,60kHz的样机进行了实验,验证了理论分析的正确性。实验结果证明该变换器能够在较宽的负载范围内实现滞后桥臂的零电流关断,适用于大功率应用IGBT的场合。  相似文献   

8.
An active‐clamp zero‐voltage‐switching (ZVS) buck‐boost converter is proposed in this paper to improve the performance of converter in light load condition. By employing a small resonant inductor, the ZVS range of switches could be adjusted to very light load condition. Moreover, 2 clamping capacitors are added in the converter to eliminate the voltage spike on the switches during transition. The operating principle of the proposed converter is analyzed, and the optimal design guide for full range ZVS is also provided. A 60‐W output prototype is experimentally built and tested in laboratory to verify the feasibility of proposed converter. The measured results show the critical ZVS operation of power switches at 1 and 0.7‐W output power for buck and boost mode, respectively. The peak conversion efficiency is up to 92.3%.  相似文献   

9.
A soft switching two‐switch forward converter is presented to achieve zero voltage switching (ZVS) turn‐on of switching devices. In the adopted converter, a buck‐boost type of active clamp is connected in parallel with the primary winding of transformer. The energy stored in the transformer leakage inductance and magnetizing inductance can be recovered so that the peak voltage stress of switching devices is limited. The resonance between the transient interval of two main and auxiliary switches is used to achieve ZVS turn‐on of all switches. The current doubler synchronous rectifier is used in the secondary side of transformer for reducing the root mean square value of output inductor current, transformer secondary winding current and output voltage ripple by cancelling the current ripple of two output inductors. First, the circuit configuration and the principles of operation are analyzed in detail. The steady‐state analysis and design consideration are also presented. Finally, experimental results with a laboratory prototype based on a 380 V input and 12 V/30 A output were provided to verify the effectiveness of the proposed converter. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents a new DC/DC converter with series half‐bridge legs for high voltage application. Two half‐bridge legs connected in series and two split capacitors are used in the proposed circuit to limit the voltage stress of each active switch at one‐half of input voltage. Thus, active switches with low voltage stress can be used at high DC bus application. In the proposed converter, two circuit modules are operated with an interleaved pulse‐width modulation scheme to reduce the input and output ripple currents and to achieve load current sharing. In each circuit module, two resonant tanks are operated with phase‐shift one‐half of switching cycle such that the frequency of the input current is twice the frequency of the resonant inductor current. Based on the resonant behavior, all MOSFETs are turned on at zero voltage switching with the wide ranges of input voltage and load conditions. The rectifier diodes can be turned off at zero current switching if the switching frequency is less than the series resonant frequency. Thus, the switching losses on power semiconductors are reduced. The proposed converter can be applied for high input voltage applications such as three‐phase 380‐V utility system. Finally, experiments based on a laboratory prototype with 960‐W rated power are provided to demonstrate the performance of proposed converter. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
An interleaved DC‐DC converter with soft switching technique is presented. There are two converter modules in the adopted circuit to share the load power. Since the interleaved pulse‐width modulation (PWM) is adopted to control two circuit modules, the ripple currents at input and output sides are naturally reduced. Therefore the input and output capacitances can be reduced. In each circuit module, a conventional boost converter and a voltage doubler configuration with a coupled inductor are connected in series at the output side to achieve high step‐up voltage conversion ratio. Active snubber connected in parallel with boost inductor is adopted to limit voltage stress on active switch and to release the energy stored in the leakage and magnetizing inductances. Since asymmetrical PWM is used to control active switches, the leakage inductance and output capacitance of active switches are resonant in the transition interval. Thus, both active switches can be turned on at zero voltage switching. The resonant inductance and output capacitances at the secondary side of transformer are resonant to achieve zero current switching turn‐off for rectifier diodes. Therefore, the reverse recovery losses of fast recovery diodes are reduced. Finally, experiments based on a laboratory prototype rated at 400 W are presented to verify the effectiveness of the proposed converter. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
This paper proposed a novel high step‐up converter with double boost paths. The circuit uses two switches and one double‐path voltage multiplier cell to own the double boost and interleaved effects simultaneously. The voltage gain ratio of the proposed DC‐DC converter can be three times the ratio of the conventional boost converter such that the voltage stress of the switch can be lower. The high step‐up performance is in accordance with only one double‐path voltage multiplier cell. Therefore, the number of diodes and capacitors in the proposed converter can be reduced. Furthermore, the interleaved property of the proposed circuit can reduce the losses in the rectifier diode and capacitor. The prototype circuit with 24‐V input voltage, 250‐V output voltage, and 150‐W output power is experimentally realized to verify the validity and effectiveness of the proposed converter. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents an interleaved zero voltage switching (ZVS) DC/DC converter with high input voltage applications. In order to reduce the voltage stress of MOSFETs, two half‐bridge zeta converters are connected in series at high voltage side. Thus, the voltage stress of MOSFETs can be clamped at one‐half of input voltage. Asymmetric pulse‐width modulation (APWM) is adopted to control power switches. With the resonant behavior by the leakage inductance of transformer and the output capacitance of MOSFET at the transition interval, MOSFETs can be turned on at ZVS. For each half‐bridge zeta converter, two series transformers are connected in series at the primary side and in parallel at the secondary side in order to reduce the current stress of secondary windings for high load current applications. Interleaved PWM scheme is used to control two half‐bridge converters in order to reduce the size of output filter inductor and capacitor due to the partial ripple current cancellation. Experimental results, taken from a laboratory prototype rated at 1 kW, are presented to demonstrate the converter performance. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
The output power requirement of battery charging circuits can vary in a wide range, hence making the use of conventional phase shift full bridge DC‐DC converters infeasible because of poor light load efficiency. In this paper, a new ZVS‐ZCS phase shift full bridge topology with secondary‐side active control has been presented for battery charging applications. The proposed circuit uses 2 extra switches in series with the secondary‐side rectifier diodes, operating with phase shift PWM. With the assistance of transformer's magnetizing inductance, the proposed converter maintains zero voltage switching (ZVS) of the primary‐side switches over the entire load range. The secondary‐side switches regulate the output voltage/current and perform zero current switching (ZCS) independent of the amount of load current. The proposed converter exhibits a significantly better light load efficiency as compared with the conventional phase shift full bridge DC‐DC converter. The performance of the proposed converter has been analyzed on a 1‐kW hardware prototype, and experimental results have been included.  相似文献   

15.
石勇 《电源学报》2012,10(6):83-91
提出一种4开关PWM三电平ZVS直流变换器,该变换器由传统三电平直流变换器和对称控制的半桥直流变换器复合而成。该电路非常适合高压直流变换领域。该变换器具有如下优点:所有开关串行联接,每个开关器件承受Vin/2的电压应力;4开关构造输出三电平,可有效减小输入输出滤波器并提高变换器的动态响应时间;所有开关器件在较宽的负载范围内实现软开关。文中分析了该电路的工作原理、软开关特性以及输入输出特性,并搭建了一套实验装置验证电路的基本工作原理。实验结果表明该电路工作原理正确,可以正常工作。  相似文献   

16.
A novel isolated high voltage‐boosting converter, derived from the traditional forward converter, is presented in this paper. As compared with the traditional forward converter, the demagnetizing winding of the transformer in the proposed converter is used not only to demagnetize but also to improve the voltage conversion ratio. Therefore, the duty cycle is not limited, and the utilization of the transformer, also called coupled inductor, can be increased also. Furthermore, the proposed converter maintains the advantage of possessing a non‐pulsating output current, leading to a small output voltage ripple. Moreover, by applying one additional voltage‐boosting winding to the transformer, the voltage conversion ratio can be significantly improved. In addition, an active clamp circuit is employed in the proposed converter to reduce the voltage stress of the main switch, caused by the leakage inductance in the transformer, and the switches can achieve zero‐voltage switching. Finally, the analysis of operating principles, choice of the turns, turns ratio, core size, and each wire size of the coupled inductor are described in detail, and the experimental results with a prototype with 12‐V input voltage, 100‐V output voltage, and 100‐W output power are provided to verify the feasibility and effectiveness of the proposed converter. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
在基于减少冗余功率(R~2P~2)原理的二次型Boost变换器基础上,通过引入辅助网络单元,提出一种基于辅助网络的软开关二次型Boost高增益变换器。该变换器在减少功率传输损耗的同时,实现了全部开关管的零电压导通(ZVS)和输出二极管的零电流关断(ZCS),降低了开关器件的开关损耗。辅助网络与二次型Boost变换器输出串联,提高了变换器电压增益,减小了开关管电压应力。因此,可选取低电压等级、低导通电阻的MOSFET管,进一步提高变换器的效率,降低成本。研究变换器的工作原理和工作特性,分析开关管ZVS条件和占空比丢失问题,设计了一台100W的实验样机,实验结果验证了理论分析的正确性。  相似文献   

18.
针对当前零电压、零电流全桥DC/DC变换器需要在辅助电路中增加有源或有损器件及二次侧整流二极管电压应力增大的问题,提出一种改进的电路拓扑结构并对工作过程进行了分析。电路超前臂零电压工作的实现方法与其他传统电路相同,采用外加辅助电容实现;滞后臂的零电流工作条件由2个二极管和1个电容构成的辅助电路实现。辅助电路中不含有源、有损器件,不会增加电路的额外损耗,相比其他拓扑结构,具有更高效率。由于与变压器二次侧抽头并联的钳位电容数值较大,将变压器副边的电压钳位,所以不会增加二次侧的整流管的电压应力。仿真结果验证了电路分析的正确性和设计的可行性。  相似文献   

19.
A new two‐transformer active‐clamping forward converter with parallel‐connected current doubler rectifiers (CDRs) is proposed in this paper. The presented DC–DC converter is mainly composed of two active‐clamping forward converters with secondary CDRs. Only two switches are required and each one is the auxiliary switch for the other. The circuit complexity and cost are thus reduced. The leakage inductance of the transformer or an additional resonant inductance is employed to achieve zero‐voltage‐switching (ZVS) during the dead times. Two CDRs at the secondary side are connected in parallel to reduce the current stresses of the secondary windings and the ripple current at the output side. Accordingly, the smaller output chokes and capacitors decrease the converter volume and increase the power density. Detailed analysis and design of the presented two‐transformer active‐clamping forward converter are described. Experimental results are recorded for a prototype converter with a DC input voltage of 130??180V, an output voltage of 5 V and an output current of 40 A, operating at a switching frequency of 100 kHz. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
一种新型交错式反激变换器分析与设计   总被引:1,自引:0,他引:1       下载免费PDF全文
提出了一种新型交错式反激变换器拓扑。利用变压器漏感与开关管并联电容、钳位电容间的谐振,实现了开关管的零电压导通(ZVS),并消除了开关管关断时所产生的电压尖峰,减小了电压应力。该变换器具有拓扑简单、实现软开关动作、输出电流纹波小以及控制简单等优点。详细分析了该变换器的稳态工作原理以及实现软开关的条件,并通过仿真和实验对上述分析进行了验证。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号