首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
锂离子电池凭借其优越的性能广泛用于电动汽车及储能领域.然而,随着使用时间增加,锂离子电池性能大幅度衰退,会间接导致设备性能衰退或发生故障.因此,准确预测锂离子电池剩余有效寿命(RUL),能够对电池进行及时维护和更换,保障电池安全可靠运行.该文从充电过程中提取能够表征电池性能退化的间接健康因子,并利用Pearson和Spearman相关性分析法分析与容量之间的相关性;构建一种基于间接健康因子的改进蚁狮优化算法(IALO)支持向量回归(SVR)预测方法,实现在线准确预测锂离子电池RUL.利用NASA电池数据集对IALO-SVR方法进行验证,对比分析反向传播(BP)和SVR方法,实验结果表明,所构建的IALO-SVR方法能够更加准确地预测锂离子电池RUL.  相似文献   

2.
精确预测锂离子电池剩余使用寿命对于保障设备安全运行十分重要。但电池寿命预测中存在诸如数据噪声和容量再生等不确定性来源,这将导致预测精度大幅下降。为解决这一问题,使用变分模态分解方法对从充电和容量数据中提取的健康因子进行滤波分解,并利用贝叶斯优化方法对相关参数进行优化,提出一种基于多核相关向量机的锂离子电池剩余使用寿命预测模型。利用美国国家航空航天局(NASA)和Oxford电池数据集对所提出的模型进行验证,研究结果表明:所提出的基于变分模态分解和贝叶斯优化的多核相关向量机(VMD-BAYES-HRVM)方法的预测性能不受预测起始点和截止电压的影响,预测结果准确性更高,95%置信区间的跨度更小,证明了所提出方法的有效性。  相似文献   

3.
随着锂离子电池的广泛应用,其寿命预测与健康管理已成为当今的热点问题。锂离子电池寿命预测对于电池管理系统的稳定运行有着重要意义。采用最小二乘支持向量机(LSSVM)模型对锂离子电池剩余寿命进行预测,并采用鸟群优化算法(BSA)对LSSVM参数进行寻优。为提高BSA的全局搜索能力,对BSA进行改进,并提出改进鸟群算法(IBSA)。最后,采用IBSA优化LSSVM模型,建立了IBSA-LSSVM预测模型并对锂离子电池剩余寿命进行预测。测试结果表明,IBSA-LSSVM模型对锂离子电池剩余寿命有良好的预测效果和预测稳定性。  相似文献   

4.
随着锂离子电池的广泛应用,其寿命预测与健康管理已成为当今的热点问题。锂电池寿命预测对于电池管理系统的稳定运行有着重要意义。采用最小二乘支持向量机(LSSVM)模型对锂离子电池剩余寿命进行预测,并采用鸟群优化算法(BSA)对LSSVM参数进行寻优。为提高BSA算法的全局搜索能力,对BSA算法进行改进,并提出改进鸟群算法(IBSA)。最后采用IBSA算法优化LSSVM模型,建立了IBSA-LSSVM预测模型并对锂离子电池寿命进行预测。测试结果表明,IBSA-LSSVM模型有良好的预测效果和预测稳定性。  相似文献   

5.
针对混合动力汽车(HEV)电池剩余容量()判别问题,将最小二乘支持向量机方法应用于混合动力汽车电池荷电状态的预测。考虑到最小二乘支持向量机的参数选择会对预测结果产生较大的影响,提出了基于留一交叉验证优化最小二乘支持向量机的预测方法。将电池的工作电压、工作电流和表面温度参数用来预测蓄电池的荷电状态实时值,在欧洲城市行驶循环工况(EUDS)条件下进行实验验证,结果表明:所设计预测模型能够实时准确地预测出值,有效性高。  相似文献   

6.
HEV电池SOC预测的留一交叉验证优化LS-SVM方法   总被引:1,自引:0,他引:1  
针对混合动力汽车(HEV)电池剩余容量(SOC)判别问题,将最小二乘支持向量机方法应用于混合动力汽车电池荷电状态的预测。考虑到最小二乘支持向量机的参数选择会对预测结果产生较大的影响,提出了基于留一交叉验证优化最小二乘支持向量机的预测方法。将电池的工作电压、工作电流和表面温度参数用来预测蓄电池的荷电状态实时值,在欧洲城市行驶循环工况(EUDS)条件下进行实验验证,结果表明:所设计预测模型能够实时准确地预测出SOC值,有效性高。  相似文献   

7.
针对目前锂离子电池剩余寿命预测模型精度低、泛化性差的问题,在一种基于充放电健康特征提取的锂离子电池剩余寿命估计方法的基础上,增加了健康因子和实际容量之间的相关性分析,具体方法是:从锂离子电池充放电电压、电流、温度曲线变化趋势中提取若干潜在健康因子,并利用主成分分析(PCA)去除数据冗余性,得到代表退化特征的融合健康因子。结合自适应遗传算法(AGA)优化了Elman预测模型。结果表明所建立的PCA-AGA-Elman神经网络预测模型误差控制在1.5%之内,可作为锂离子电池的剩余使用寿命(RUL)预测模型。  相似文献   

8.
针对锂离子电池健康因子衰退指标预测不佳,影响电池有效更换的问题,设计基于贝叶斯理论的新能源锂离子电池剩余寿命预测方法。提取新能源锂离子电池的衰退特征,并分析电池衰退变化;通过贝叶斯理论确定电池剩余寿命先验分布,提高电池剩余寿命预测的置信度;根据先验分布结果,构建锂离子电池剩余寿命预测模型,对电池寿命期望函数进行分析,进而实现新能源锂离子电池的有效利用。采用对比实验的形式,验证了该预测方法新能源锂离子电池剩余寿命预测效果更佳,可以应用于实际生活中。  相似文献   

9.
随着锂离子电池在储能系统中比例迅速增大,为避免因电池性能退化导致的事故,如何准确预测锂离子电池剩余使用寿命就成为保障储能系统可靠运行的关键。针对锂离子电池剩余使用寿命预测的问题,提出一种改进灰狼优化多核极限学习机(IGWO-MKELM)预测方法。首先从电池充放电过程中提取能够表征电池寿命退化的间接健康因子作为输入量,然后采用改进灰狼算法对多核极限学习机参数进行寻优,建立改进灰狼优化多核极限学习机预测方法,最后使用NASA电池数据集进行仿真实验。结果表明,IGWO-MKELM方法可以更加精确地预测锂离子电池剩余寿命。  相似文献   

10.
基于PSO优化LSSVM的短期风速预测   总被引:4,自引:0,他引:4       下载免费PDF全文
为了提高风电场风速短期预测的精确性,提出了基于粒子群算法优化最小二乘支持向量机的预测方法。首先求出风速时间序列的嵌入维数和延迟时间,进而对混沌风速时间序列进行相空间重构。利用粒子群算法对最小二乘支持向量机进行参数优化,然后利用优化后的最小二乘支持向量机模型对相空间重构后的风速时间序列进行预测,预测结果表明基于粒子群优化的最小二乘支持向量机的预测效果满足了精度要求。同时运用了支持向量机和BP神经网络模型进行预测,仿真结果表明,基于粒子群优化的最小二乘支持向量机预测方法具有预测精度高,预测速度快的优点,因此具有很高的工程实际应用意义。  相似文献   

11.
12.
刘丽珍  王碧 《电力学报》2008,23(2):91-93
大型企业电网的负荷特性主要表现为感应电动机群特性,为了改进现在常用的电力系统潮流算法中用恒功率模型来表征节点负荷,不能满足工程精度要求的问题,提出了在对企业电网负荷节点电动机群进行等效变换后,引入负荷特性的潮流计算的思路,在此基础上进行了理论推导,并经过现场实测数据,进行了仿真。仿真结果表明,负荷特性的潮流计算方法符合企业工程精度要求,可以达到提升业电网潮流计算结果在精确度、实用度等方面的要求,具有一定的理论和工程意义。  相似文献   

13.
小功率金卤灯再启动特性机理的探讨   总被引:1,自引:0,他引:1  
利用专门设计的金卤灯再启动特性测试仪记录了金卤灯再启动特性的若干典型曲线,对某些异常特性的发生机理进行了分析,找到了它们与金卤灯内在质量的联系,研究表明通过测量金卤灯的再启动特性可以方便地诊断金卤灯的内在质量。  相似文献   

14.
简述了水口水电厂机组顶盖排水控制系统改造的必要性,介绍了系统改造方案,指出了系统调试的注意事项,提出了系统改进建议。  相似文献   

15.
曾正 《灯与照明》2006,30(4):13-15,22
路灯照明用电在我国发电总量中占据了相当的比重。该文利用环境战略评价理论结合实际调查研究,对武汉市路灯节能现状的社会、经济、环境进行了综合性评价,并对其提出了调整建议。  相似文献   

16.
引风机驱动方式的能效分析   总被引:2,自引:0,他引:2  
吴斌 《电力勘测》2012,(4):26-29
本文对汽动引风机的节能效果进行分析。将电厂看成一个整体系统,在能量输入一定的情况下,计算各种引风机驱动方式对电厂能源输出的影响,得出背压式小汽机驱动方式节能效果最好,供业内参考。  相似文献   

17.
接触器对电动机欠压保护的功能,是防止电动机出现堵转,对于电动机欠压运行造成的过流的保护,将主要由电动机的过载保护装置热继电器承担,接触器对此很难起到保护作用。  相似文献   

18.
胡晓萌 《高电压技术》2006,32(2):119-119,121
通过对运行中几起典型缺陷的分析,从设计、运行、出厂工艺等几方面浅析了GN30—10Q/3150型隔离开关在通过大电流时套管开裂的原因,并提出了相应的防范措施。  相似文献   

19.
压实度标准制定的合理性   总被引:5,自引:0,他引:5  
通过土料干湿法对比试验和环刀取土尺寸效应对比试验, 探讨了影响分层碾压土基垫层 压实度的主要因素, 指出通过击实试验制定土基压实度标准和施工质量检验时应注意的问题, 以及如何确保压实度标准制定的合理性和现场检验的客观性。  相似文献   

20.
对<绝缘油中溶解气体组份含量的气相色谱测定法>在实践中的应用,进行了相应的分析.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号