首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
统一电能质量控制器(UPQC)结合模块化多电平换流器(MMC)而成的MMC-UPQC系统能够解决高压下电能质量问题,但目前MMC-UPQC常用PID等线性控制来补偿电流和电压,但因MMC-UPQC为非线性、多变量对象,因此,PID等线性控制难以得到满意的补偿效果。为此,提出将非线性Lyapunov函数控制用于MMC-UPQC电流和电压的补偿控制。首先,对不平衡电网下MMC-UPQC进行数学建模;接着,对不平衡电网下MMC-UPQC的电气量进行正负序分离;然后,将提出的Lyapunov函数控制用于不平衡电网下MMC-UPQC的电能质量补偿,并证明了Lyapunov函数控制系统的稳定性,推出了Lyapunov函数控制增益的稳定范围;最后,在仿真系统平台上对Lyapunov函数控制和传统PID控制两种方法进行仿真实验比较,仿真结果验证了Lyapunov函数控制方法能够更好地补偿MMC-UPQC电流和电压的电能质量。  相似文献   

2.
传统模块化多电平变换器统一电能质量控制器(MMC-UPQC)的串联变压器采用固定变比结构,该结构导致UPQC装置电压暂降补偿深度最大值为固定值,在馈线负荷未达到额定容量时串联变换器不能输出额定容量来补偿电压暂降。为充分利用串联变换器的容量补偿电压暂降,提出了新结构的MMC-UPQC以提高电压暂降补偿深度。分析了传统及新结构MMC-UPQC的电压暂降补偿能力,并通过仿真研究验证了新结构MMC-UPQC的正确性。与传统MMC-UPQC相比,新结构MMC-UPQC在保持装置容量不变的前提下,可分段动态调节电压暂降补偿深度,增大各段馈线负荷容量范围下MMC-UPQC装置的电压暂降能力。  相似文献   

3.
电网电压不平衡时,电流电压波动较大,基于模块化多电平变换器(MMC)的统一电能质量调节器(UPQC)采用简单的PI控制难以调节电能质量.针对MMC-UPQC在电网电压不平衡的运行状态,提出一种基于正负序分离MMC-UPQC的微分平坦控制(DFBC)方法,它能够综合治理电压和电流的电能质量问题.首先,根据MMC-UPQC的拓扑结构,建立其在不平衡电网下的数学模型,分析MMC-UPQC的内部特性,验证MMC-UPQC的平坦性和稳定性;然后,根据正负序分离方法,采用无需锁相环方法对检测量进行分离,基于微分平坦控制理论,搭建结合前馈参考轨迹和误差反馈补偿的微分平坦控制器,并将其应用到多电平、高电压的MMC-UPQC电能质量补偿系统中,综合解决电网电压不平衡状态下的电网电能质量问题;最后,通过实验验证了基于所提微分平坦控制器的MMC-UPQC系统解决电压暂升、暂降和注入谐波问题的有效性和优越性.  相似文献   

4.
针对非理想电网电压时模块化多电平换流器(MMC)和统一电能质量控制器(UPQC)组合而成的MMC-UPQC,采用单一的PID控制、无源性控制(PBC)、滑模控制(SMC)的电能质量不够理想问题,提出了PBC与SMC组合的无源性滑模控制(PBC-SMC)策略来提高电能质量。首先,推导出电网电压不平衡时MMC-UPQC的总体数学模型,并对电压与电流进行正序与负序分离;然后,针对当前单一的控制方法的补偿效果存在的问题,提出了MMC-UPQC的PBC-SMC控制策略来提高电压电流电能质量;最后,通过MATLAB/Simulink仿真验证了所提控制策略的正确性和可行性,基于PBC-SMC控制的MMC-UPQC系统能够很好地补偿电压电流,提升电能质量,且相比于PID和PBC控制,还有抗扰性更强、精确度更高、响应更快特点。  相似文献   

5.
王浩  刘进军  刘正富 《广东电力》2014,(1):89-93,99
给出了10 kV配电网基于模块化多电平变换器技术的统一电能质量控制器(modular multilevel converter based unified power quality conditioner,MMC-UPQC)装置提高实用性的五种方法。第一种方法采用变比可变的变压器代替传统MMC-UPQC的串联变压器,提高了MMC-UPQC电压暂降补偿深度;第二种方法采用双串联变换器串联代替传统MMC-UPQC的单串联变换器,减小了公共直流侧电压,降低了阀组柜绝缘要求;第三种方法在电压暂降期间控制并联变换器吸收适量的有功功率,减少了MMC-UPQC子模块直流电容的释放能量,减小了直流电容的容量;第四种方法 MMC-UPQC子模块采用混频控制,根据子模块需治理的电能质量问题设定控制脉冲的频率,减少了子模块内开关器件损耗,降低了散热措施要求;第五种方法在控制策略中引入环流抑制控制,减小了MMC-UPQC变换器内部的环流电流及桥臂电抗器感抗。与传统MMC-UPQC装置相比,采用所提五种方法的MMC-UPQC装置能提高电压暂降补偿能力,减小占地面积和成本。  相似文献   

6.
《高电压技术》2021,47(4):1344-1353
基于模块化多电平变换器(modular multilevel converter,MMC)的统一电能质量调节器(unified power quality conditioner,UPQC)可用于高电压下电压电流的电能质量综合治理,但当电网电压不平衡时,电流电压相位和幅值发生变化,给综合治理带来困难。将无源控制方法应用到MMC-UPQC中,以解决电网电压不平衡下的电能质量问题。首先,根据MMC-UPQC的拓扑结构,建立其在不平衡电网下的数学模型;然后,根据正负序分离方法,对检测量进行无需锁相环的分离;接着基于无源控制理论,搭建基于E-L模型的无源控制器,并将其应用到多电平、高电压的电能质量补偿系统中;最后,利用串联侧补偿电压和并联侧补偿电流的原理,通过协调控制综合解决不平衡状态下的电网电能质量问题。Matlab/Simulink平台实验结果发现基于所提无源控制器的MMC-UPQC系统响应时间小于0.05 s且总谐波失真度小于5%,验证了其解决电能质量综合治理问题的有效性和优越性。  相似文献   

7.
分析五电平模块化多电平变换器-统一电能质量调节器(MMC-UPQC)的主电路拓扑和工作原理,建立其在dq0坐标系下的数学模型及EL模型。为加快误差能量收敛,采用阻尼注入方法设计电流内环无源控制器,确保MMC-UPQC的稳定性;通过电压外环PI控制器获得内环期望电流,消除静态误差。所提出的无源控制实现了对有功和无功的解耦控制,使系统具有良好的动静态性能。在负序二倍频坐标变换下采用相间解耦控制抑制环流,减少开关损耗;采用基于Park变换的电压电流补偿量提取方法,无需锁相环,提高补偿精度。最后在Matlab/Simulink搭建五电平MMC-UPQC仿真模型,仿真结果表明能够较准确地补偿不平衡、谐波电压以及无功、谐波电流,证明了无源控制的可行性。  相似文献   

8.
针对现有同相供电系统中有源补偿容量较大、成本高的缺陷,提出一种基于混合补偿的同相供电系统。首先,分析了该系统的拓扑结构及工作原理,建立了混合补偿模型;其次,分析了无源补偿容量、负荷大小和功率因数对有源补偿容量的影响,完成了混合补偿容量优化配置;最后,研究了电能质量指标优化补偿原理,推导了电能质量指标参数与有源补偿装置两变流器补偿电流给定值之间的关系,建立了有源补偿容量优化模型,并采用粒子群优化算法进行寻优计算。同时,根据实测负荷数据仿真验证了混合补偿模型和协同控制策略的可行性及有效性。结果表明,混合补偿有效降低了有源补偿容量,优化补偿后在满足国标要求的同时进一步降低了有源补偿容量。  相似文献   

9.
基于三相多功能逆变器(three-phase multi-function inverters,TPMFI),提出一种微电网电能质量综合治理方案。将线性自抗扰控制器和重复控制器结合,提出一种兼具快速性和高跟踪精度的电流内环-LADRC+RC电流内环;并依靠LADRC+RC电流内环的良好性能,提出一种适用于TPMFI的下垂控制策略,同时保证TPMFI的电能质量补偿功能与功率输出功能的实现,进而确保微电网的稳定运行;最后在此基础上,提出一种基于熵-Shapely二次权重修正法的TPMFI补偿容量分配方案,对微电网的整体电能质量进行实时优化补偿。Simulink仿真表明,所提综合治理策略能在保证微电网的稳定运行的基础上,改善微电网的电能质量。  相似文献   

10.
针对微网电能质量问题的复杂性和多样性,提出了基于目标配置的多目标广义比例积分误差校正控制方法的微网SVG电能质量综合控制装置,实现了最优补偿目标确定和最佳容量分配,解决了传统PI控制方法对变化的交流信号跟踪效果欠佳的问题。仿真分析和实验结果表明,所提方法实现了电能质量综合控制装置对微网电能质量问题的多目标复合控制,有效解决微源和各种新型负荷带给微网的多种能质量问题。  相似文献   

11.
基于模块化多电平换流器的统一电能质量控制器(MMC-UPQC)是一种可应用于中、高压配电网的电能质量综合治理装置。在保证设备安全情况下完成装置的预充电过程是装置正常工作的前提,文中对预充电过程3个阶段(不控整流阶段、串联部分子模块电压提升阶段以及可控整流阶段)进行了数学建模与分析,认为在不控整流阶段,各相桥臂子模块中与子模块直流电容并联的反并联二极管将耐受最大冲击电流;在串联部分子模块电压提升阶段,限流电阻仍是限制冲击电流的主导因素,且该阶段所能产生的冲击电流要小于不控整流阶段。由此提出了MMC-UPQC的预充电控制策略,并通过数字仿真和低压物理样机对所提策略的有效性和可行性进行了验证。  相似文献   

12.
配电系统的最新趋势表明,非线性负载的使用将在未来呈现上升的趋势,因此研究了并联型有源滤波器,用来消除谐波,从而提升电能质量。使用一种无谐波检测方法,从而使补偿精度不再受负载电流检测精度的影响,输出电流波形的控制使用一种优化的准比例谐振控制器完成。在并联型有源滤波器主电路系统结构的基础上,提出了一种电压电流双闭环及电流比例负反馈的准比例谐振优化控制方案。最后,通过MATLAB/Simulink对所提优化控制方案进行仿真,所提出优化控制的可行性通过仿真实验得到充分验证。  相似文献   

13.
针对现有各种电能质量治理设备缺乏规范的考核方案,复杂实验环境难以模拟构建等问题,基于先进的电力电子技术和数字仿真技术,提出一种串并联电能质量治理设备综合测试方案,可以实现一套方案同时完成中低压串并联多种D-FACTS电能质量治理设备的多种功能和性能测试。方案通过网-源-荷-开关-被测设备位置的合理配置,采用实物连接和等效测试相结合的方法,既可以测试电能质量设备本身的各种电气功能参数,还可以综合衡量电能质量设备在电力系统环境运行时的运行功能和各项性能指标。实验结果表明,所提测试方案有效可行。  相似文献   

14.
储能式统一电能质量控制器负载电压全补偿容量配置策略   总被引:1,自引:0,他引:1  
常规储能式统一电能质量控制器(UPQC)的补偿策略,为了实现串、并单元的功率协调分配,可能出现补偿前后负载电压相位跳变问题,对相位跳变敏感负荷有影响。为此,文中对储能式UPQC提出了一种负载电压幅值和相位全补偿容量配置策略。该策略在实现负载电压完全补偿的前提下,利用储能单元能够提供有功功率的特点,通过选择合适的并联补偿电流并使其幅值保持恒定,减小补偿后的电源电流幅值,从而使串联单元保持较低的补偿容量,减小了UPQC的串联单元容量的配置。仿真及低压小功率样机实验结果表明,所提策略可以实现负载电压的完全补偿,并减小了UPQC的串联单元补偿容量。  相似文献   

15.
针对不平衡电网下大容量谐波补偿,提出一种模块化有源电力滤波器APF分序并联的控制策略。采用两个子模块组成一个大的功率单元,两个子模块一个采用正序电压和电流控制,补偿正序谐波;另一个采用负序电压和电流控制,补偿负序谐波。在谐波的检测上采用指定次谐波多同步旋转坐标检测方法,并对滤波环节加以优化,降低了谐波电流采样延时。搭建了Matlab仿真模型,仿真结果表明不平衡电压下负载电流谐波得到很好地抑制,验证了该控制策略的可行性。  相似文献   

16.
利用相量图分析方法对采用能量优化控制策略的串联型电能质量控制器(series power quality controller, SPQC)稳态特性进行了定量分析。选取负载电流相量为参考相量对SPQC进行相量图分析,使各物理量之间的关系更清晰,便于定量求解。根据电源电压幅度与负载功率因数的关系,提出采用能量优化控制策略的SPQC 3种工作模式。分别在电压暂低和电压暂高情况下,对采用能量优化控制策略的SPQC稳态特性进行了详细的定量分析,据此获得了反映电压幅度暂变各种情况下有关物理量之间关系的稳态补偿特性解析式和曲线。仿真和实验验证了该文分析的可行性、有效性及能量优化控制策略不同工作模式划分的正确性。  相似文献   

17.
针对牵引变电所群贯通供电系统存在的三相电压不平衡问题,提出一种基于三相变压器与静止无功发生器(SVG)的负序集中补偿方案及控制策略.首先,根据牵引变压器的功率变换关系及不同的负荷情况,推导了2种模式下补偿装置对牵引负荷的补偿功率通用表达式.根据中国的电能质量标准,提出了以负序满意补偿为目标的双限值补偿方案,方案包括了模式选择方法、SVG容量配置方法及SVG运行方法.根据补偿方案,设计了带有模式判别的SVG双闭环补偿控制策略.然后,采用牵引变电所实测数据对补偿方案进行验证,证明了方案具有良好的补偿效果,与全补偿方案相比,所提方案需要的装置容量更小.最后,通过仿真证明了控制策略对负序补偿的有效性和较快的响应速度.  相似文献   

18.
应用于 DSTATCOM 的负序电流优先补偿策略   总被引:1,自引:0,他引:1  
为了提高配电网静止同步补偿器(distribution-level static reactive compensator,DSTATCOM)补偿负荷的灵活性,提出了一种针对 DSTATCOM 的电流优化补偿策略,即负序电流优先补偿策略.当 DSTATCOM 的容量能够补偿全部的负序电流分量却不能补偿全部负荷电流时,该补偿策略能够完全补偿负序分量、保证无功分量的最大程度补偿.在配电网的电能质量治理中,该补偿策略优先保证了系统的三相电压对称性.该策略能够应用于星形或角型拓扑的DSTATCOM 中,仿真结果证明了其有效性和准确性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号