首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
针对永磁直线同步电机(PMLSM)易受非线性因素影响而降低伺服系统鲁棒性的问题,提出一种自适应互补滑模控制方法。永磁直线同步电机的非线性因素包括系统参数变化、电机端部效应及外部不确定性的扰动。互补滑模控制将积分滑模面与广义误差滑模面相结合,将系统状态轨迹限定在两个面的交线上,缩短了状态轨迹达到滑模面的时间,提高了位置跟踪精度。为了进一步改善系统鲁棒跟踪性能,利用自适应控制对不确定扰动因素的上界进行估计,减小不确定因素对系统的影响,改善滑模控制的抖振现象。实验结果表明所提出的控制方法是有效可行的,自适应互补滑模控制不仅提高了系统的跟踪性能,而且更有效地抑制了不确定因素对控制系统的影响。  相似文献   

2.
永磁直线同步电机的智能互补滑模控制   总被引:1,自引:0,他引:1  
针对永磁直线同步电机(PMLSM)伺服系统的位置跟踪精度问题,提出了一种基于径向基函数(RBF)神经网络的智能互补滑模控制(ICSMC)方法。建立了包含端部效应、参数变化、外部扰动及非线性摩擦等不确定性因素的PMLSM动态方程。设计了互补滑模控制器,采用广义滑模面和互补滑模面相结合的设计,降低了系统跟踪误差,提高了系统响应速度,并削弱了抖振现象;利用RBF神经网络直接对系统存在的不确定性进行估计,在线调整RBF网络参数以改善系统动态性能,提高系统鲁棒性,并用李雅普诺夫定理保证系统闭环稳定性。通过分析系统实验结果,验证了所提出的控制方法有效降低了系统跟踪误差,并使系统具有良好的动态性能和鲁棒性能。  相似文献   

3.
为解决永磁直线同步电机(PMLSM)运行过程中对参数变化、外部扰动和摩擦力等不确定性因素敏感的问题,提出一种动态边界层全局互补滑模控制(GCSMC)方法。首先建立含有不确定性因素在内的PMLSM数学模型。然后利用广义滑模面和互补滑模面相结合的方式设计互补滑模控制器,来抑制不确定性因素对系统的影响,进而削弱抖振,但其边界层厚度值恒定不变,致使系统状态轨迹只能在边界层范围内收敛。为此,采用新型饱和函数来设计全局互补滑模控制器,以实现边界层的动态变化,使边界层厚度值随状态轨迹的变化而减小直至收敛到切换平面上,进一步提高了系统在边界层内的鲁棒性。实验结果表明该方法既改善了系统跟踪性能,又保证了系统的全局鲁棒性。  相似文献   

4.
祁瑒娟  于洋 《电气传动》2022,52(6):9-13+32
为提高感应电机(IM)伺服驱动系统的控制性能,抑制电机参数变化、外部扰动和未建模动态等不确定性因素对系统的影响,提出一种基于径向基神经网络(RBFN)的智能动态滑模控制(IDSMC)方法。首先利用动态滑模控制(DSMC)方法削弱抖振,提高系统的跟踪精度。但由于DSMC中切换函数所需的不确定性边界值无法获知,因此将RBFN不确定性估计器与DSMC相结合,设计IDSMC方法进一步提高系统的鲁棒性。RBFN可通过自适应学习算法估计不确定性因素值并在线训练调整网络参数,以确保系统在不确定性因素存在时仍能高性能运行。最后,通过TMS320C31 DSP控制核心验证所提方法的有效性。实验结果表明,IDSMC不但可以保证系统精准的响应能力,还有较强的鲁棒性。  相似文献   

5.
针对永磁直线同步电机(PMLSM)直接驱动伺服系统易受参数变化、外部扰动、端部效应等不确定性因素的影响,提出了一种自适应增量滑模控制(AISMC)方法。通过利用系统先前的状态信息和控制动作来设计增量滑模控制器,同时选择饱和函数作为切换函数,不仅削弱了抖振,而且提高了系统的跟踪性能。然后利用自适应控制来观测和补偿参数变化与外部扰动等不确定性因素的影响,并对不确定性参数的界限进行实时估计,设计出自适应增量滑模控制器。从理论上分析证明了此控制器可以保证系统收敛,具有快速的收敛速度,提高了直线伺服系统的跟踪性能。通过系统实验,证明了所提出的AISMC方案的有效性,与滑模控制(SMC)相比,基于AISMC的系统具有较强的鲁棒性和精确的跟踪性,明显削弱了抖振现象。  相似文献   

6.
针对永磁直线同步电动机(PMLSM)伺服系统存在的参数变化、外部扰动和摩擦力等不确定性因素,该文采用了积分反推控制和自适应改进Elman神经网络相结合的控制方案。首先,针对PMLSM伺服系统的非线性特性,利用积分反推控制方法,通过逐步修正算法来设计虚拟控制函数,实现系统的全局调节和位置跟踪;其次,设计自适应改进Elman神经网络来估计系统中存在的不确定性,且利用基于Lyapunov函数的自适应律推导出神经网络的在线参数学习律,使系统具有适应时变特性的能力,克服不确定性对系统的影响,从而提高系统的鲁棒性;最后,实验结果表明所提出的控制方案是有效的,明显提高了系统的跟踪性能和鲁棒性能。  相似文献   

7.
针对永磁直线同步电机直接驱动伺服系统的位置跟踪精度易受参数变化、外部扰动、端部效应等不确定性因素的影响,提出了一种将小波神经网络(wavelet neural network,WNN)和增量滑模控制器相结合的智能增量滑模控制方法。利用系统先前的状态信息和控制动作作为反馈量,同时选择饱和函数作为切换函数来设计增量滑模控制器,不仅削弱了抖振,而且提高了系统的跟踪性能;利用WNN实时观测和补偿参数变化和外部扰动等影响,并采用改进的粒子群优化算法在线调整WNN的学习率,对不确定因素进行实时估计。从理论上分析证明了此控制器可以保证系统收敛,提高了直线伺服系统的控制性能。通过系统实验,证明了所提出方案的有效性,与滑模控制(sliding mode control,SMC)相比,系统具有强鲁棒性和良好的位置跟踪精度,明显地削弱了抖振现象。  相似文献   

8.
针对永磁直线同步电机(PMLSM)易受系统参数变化、外部扰动、摩擦力等不确定性因素影响的问题,采用二阶滑模控制(2OSMC)和递归径向基神经网络(RRBFNN)相结合的智能二阶滑模控制(I2OSMC)方法来提高系统控制性能.利用2OSMC削弱传统滑模控制中的抖振问题,提高了系统的位置跟踪精度.但由于难以估计系统中不确定性因素的边界,从而无法实现2OSMC的最佳性能,因此,引入RRBFNN对不确定性因素进行估计.由于RRBFNN具有较快的学习能力,可通过在线训练网络参数,进而提高系统的鲁棒性.实验结果表明,所提出的控制方法切实可行,能够有效地抑制不确定性因素对系统的影响,使系统具有较高的位置跟踪精度和较强的鲁棒性能.  相似文献   

9.
针对直接驱动(DDV)伺服系统中由于参数变化、齿槽效应以及液动力负载扰动所造成的跟踪性能降低的问题,提出一种神经网络自适应滑模控制策略,采用径向基函数神经网络(RBFNN)取代滑模切换控制部分,利用其在线学习功能,对系统的不确定因素进行自适应补偿,并通过与比例微分算法(PD)的并行控制,改善神经网络参数的收敛,降低局部极小现象发生的可能性,增强系统的稳定性.仿真结果表明该方法不仅使系统具有良好的跟踪性能和强的鲁棒性,还有效地消除了高频抖振现象.  相似文献   

10.
为解决永磁直线同步电机(PMLSM)伺服系统位置跟踪精度易受参数变化、负载扰动、摩擦力等不确定性因素影响的问题,该文提出一种基于径向基函数(RBF)神经网络反推终端滑模控制方法。首先,建立含有不确定性的PMLSM动态数学模型。然后,采用反推终端滑模控制将系统状态在有限时间内收敛到平衡点,提高系统的响应速度;为了进一步削弱抖振现象,利用双曲正切函数与边界层厚度相结合来设计饱和函数,以取代符号函数;并且利用RBF神经网络去逼近系统中存在的不确定性,进而获得快速的跟踪性能和较强的抗扰能力。最后,实验结果表明,所提出的控制方法不仅改善了系统的跟踪性和鲁棒性,而且明显削弱了抖振问题。  相似文献   

11.
基于神经网络的永磁直线同步电机自适应滑模控制   总被引:1,自引:0,他引:1  
针对永磁直线同步电机(PMLSM)直接驱动系统的非线性与电机参数时变、易受扰动的特性,将滑模控制和神经网络控制相结合,用两个神经网络控制器分别实现滑模等效控制和滑模切换控制,构成神经网络自适应滑模控制。仿真结果表明,神经网络滑模控制和常规的滑模控制相比,具有更好的动态稳定性和跟踪性能,对外界干扰具有较强的鲁棒性。  相似文献   

12.
针对外界扰动及不确定性等因素对电气伺服系统性能的影响,将具有积分滑模面的自适应模糊控制器引入电气伺服系统的位置控制,利用滑模控制克服不确定性因素影响,通过自适应律与模糊规则的结合削弱滑模控制引起的抖振,通过参数自适应估计方法保证滑模变结构控制增益的合理性,提高了电气伺服系统的稳定性与位置跟踪性能.仿真实验结果表明,这种控制系统具有控制结构简单,稳态性能好等优点,并对不确定性等因素具有良好的鲁棒性.  相似文献   

13.
针对永磁直线同步电机(PMLSM)伺服系统的位置跟踪精度易受参数变化、外部扰动等不确定性因素影响,该文提出了自适应非奇异快速终端滑模控制(ANFTSMC)方法。首先,建立含有不确定性的PMLSM动态模型。然后,采用非奇异快速终端滑模控制(NFTSMC)方法来抑制这些不确定因素的影响,避免了奇异性,进而保证了系统跟踪误差在有限时间内快速收敛,且削弱了抖振;同时,利用自适应控制估计系统中不确定性参数的上界,提高了系统的鲁棒性能。最后,通过实验验证了所提出控制方案的有效性,与SMC、NFTSMC相比,该方法在保证快速收敛性和跟踪精度的情况下,明显削弱了抖振现象,具有较强的鲁棒性能。  相似文献   

14.
针对永磁直线同步电机伺服系统易受周期性扰动、摩擦力及参数摄动等不确定性因素影响位置跟踪精确度的问题,提出了一种基于周期性扰动学习的自适应滑模控制方法.采用滑模控制确保永磁直线同步电机伺服系统对不确定性因素具有较强的鲁棒性,提高系统响应速度.利用周期性扰动学习算法学习系统中的周期性扰动并进行补偿,同时设计自适应律估计系统非周期性扰动和学习误差,削弱滑模抖振现象.基于李雅普诺夫稳定性理论,分析证明了此控制器的渐进稳定性,保证系统位置跟踪误差在有限时间内收敛.仿真与实验验证了所提出的周期性扰动学习的自适应滑模控制器能显著提高永磁直线同步电机伺服系统的动态响应性能和鲁棒性能,而且可以达到更高的位置跟踪精确度.  相似文献   

15.
针对永磁直线同步电动机(PMLSM)伺服系统中存在的参数变化、负载扰动和摩擦力等不确定性因素,采用了函数链模糊神经网络(FLFNN)和分数阶反推控制(FOBC)相结合的控制方案来提高系统的控制性能.首先,采用FOBC实现系统的全局调节和位置跟踪,提高系统的收敛速度和控制精度;然后,采用Hermite多项式函数链模糊神经网络(HFLFNN)直接估计系统中存在的不确定性,同时利用指数补偿器对估计误差进行补偿,进一步提高系统的鲁棒性;最后,利用Lyapunov函数推导出系统中控制参数的在线调整估计律.实验结果表明所提出的控制方法切实可行,能够有效地抑制不确定性对系统的影响.与FOBC相比,具有更好的跟踪性能和鲁棒性能.  相似文献   

16.
针对永磁直线同步电机(PMLSM)伺服系统位置跟踪精度易受参数变化、负载扰动、摩擦力等不确定性因素影响的问题,提出自适应反推全局快速终端滑模控制(ABGFTSMC)方法。首先,建立含有不确定性的PMLSM动态数学模型。然后,采用反推控制将复杂的非线性系统分解成低阶子系统,并利用全局快速终端滑模控制将系统状态快速收敛到平衡点,提高系统的响应速度,增强系统的鲁棒性;再结合自适应控制实时调整切换控制增益值,以便获得合适的切换增益,从而削弱了抖振现象。从理论上证明了该控制方案能够使系统获得快速收敛性和良好的跟踪性。最后,通过系统实验证明了所提出的控制方案不仅具有更快的收敛性,而且具有更快的跟踪性和更强的鲁棒性。  相似文献   

17.
针对永磁直线同步电机(PMLSM)伺服控制系统易受参数变化、外部扰动、非线性摩擦力等不确定性因素的影响,采用了一种自适应非线性滑模控制(ANLSMC)方案。首先,建立了含有不确定性因素的PMLSM动态方程,然后,通过速度作为状态变量的非线性函数和广义滑模面相结合,设计了非线性滑模面,这样不仅提高了系统的响应速度,而且增强了系统的鲁棒性。通过自适应控制在线调整趋近律中的控制增益来调节系统状态轨迹到达滑模面的趋近速度,削弱了抖振现象,同时减少了系统跟踪误差,进而提高系统的控制精度。最后,实验结果表明所采用的控制方案有效可行,与滑模控制(SMC)和非线性滑模控制(NLSMC)相比,ANLSMC不仅提高了系统的响应速度,而且改善了系统的跟踪精度和鲁棒性能。  相似文献   

18.
为提高永磁直线同步电动机(PMLSM)伺服系统的控制性能,解决参数变化、外部扰动和摩擦力等不确定性因素对系统影响的问题,提出一种基于函数链径向基神经网络(FLRBFNN)的自适应反推控制(ABC)方法。首先建立含有不确定性因素的PMLSM动态模型;其次,利用ABC中的自适应律对系统总不确定性进行估计,但在设计ABC时存在大量求导运算,以至于产生"微分爆炸"现象。因此,为解决这一问题并进一步提高系统性能,采用FLRBFNN在线学习并调整控制器参数,FLRBFNN将径向基神经网络(RBFNN)和函数链神经网络(FLNN)相结合,利用FLNN增大神经网络搜索空间,提高网络收敛速度和收敛精度,从而提高RBFNN估计系统不确定性的能力,有效降低不确定性因素对系统的影响。实验结果表明,该方法切实可行,与ABC相比,能够使系统具有较强的鲁棒性能和跟踪性能。  相似文献   

19.
针对光伏系统常见最大功率点跟踪控制方法跟踪速度慢、跟踪精度低的问题,提出了一种基于改进粒子群优化径向基函数神经网络滑模控制的跟踪方法。通过借鉴粒子群优化过程中的多样性、非线性和自适应性,重新设计速度更新权值,进一步优化网络参数,旨在增强径向基函数对滑模控制非线性函数的逼近能力,再将优化的神经网络逼近滑模控制器的不确定状态,同时消除时变和非线性的不确定性对控制系统的影响,实现光伏系统的最大功率点跟踪。通过仿真验证了所提方法的有效性。  相似文献   

20.
针对直驱XY平台在加工高进给率或存在尖角的轮廓时精度较差这一问题,该文提出一种精密轮廓跟踪控制方法。首先,利用参考轮廓和当前位置信息构造关于轮廓误差的代价函数,采用牛顿极值搜索算法进行动态轮廓误差估计(CEE)。然后,对轮廓误差进行迭代学习控制(ILC),并将ILC的结果用于调整参考轮廓,形成修正参考轮廓,以获得更好的跟踪性能,从而改善轮廓精度。接着,利用互补滑模控制器(CSMC)抑制系统中参数变化、外部扰动、非线性摩擦等不确定性因素的影响,提高单轴的鲁棒性能和跟踪性能。最后,系统实验结果表明,该控制方法能够明显地提高系统的控制性能,减小系统的轮廓误差,进而改进直驱XY平台伺服系统的高精度轮廓加工性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号