首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
环氧复合材料在高温高场等复杂的工况下易积聚空间电荷,造成局部场强畸变,严重时将引发局部放电乃至绝缘击穿。通过纳米MgO颗粒与环氧树脂(EP)混合制备不同掺杂率的纳米MgO/EP复合电介质,采用差示扫描量热分析(DSC)测试环氧复合电介质的玻璃化转变温度;采用热刺激去极化电流法(TSDC)拟合计算环氧复合电介质的陷阱特性;采用电声脉冲法(PEA)测试环氧复合电介质的空间电荷特性。结果表明:纳米MgO颗粒的添加可以提高环氧树脂的玻璃化转变温度,抑制环氧树脂内空间电荷积聚。随着纳米MgO掺杂率的增加,纳米MgO/EP复合电介质的玻璃化转变温度先上升后下降,深陷阱能级和密度均先增大后减小;空间电荷密度先下降后上升,电场畸变的变化趋势与空间电荷的变化趋势相似。当纳米MgO掺杂率为3%时,纳米MgO/EP复合电介质的玻璃化温度达到最大值,抑制空间电荷积聚和场强畸变的能力最好。  相似文献   

2.
采用4种不同的硅烷偶联剂对微米氧化铝颗粒进行表面修饰,制备了微米氧化铝/环氧树脂复合材料。研究了不同表面修饰的微米氧化铝颗粒对环氧树脂体积电阻率、电气强度、介电常数及介质损耗因数的影响规律,通过热刺激电流实验分析了材料的陷阱性质。结果表明:不含极性基团的短链硅烷偶联剂对微米颗粒的修饰效果最好,复合材料的绝缘性能随着微米颗粒的极性降低而升高,复合材料内部陷阱深度的增加可能是其绝缘性能提高的原因。  相似文献   

3.
在甲苯溶剂中通过预先接枝在SiO_2粒子上的硅烷偶联剂二次接枝环氧链段的方法,制备了接枝环氧链段的SiO_2粒子。采用不同偶联剂处理方式制备了3种SiO_2添加量为1份的SiO_2/环氧树脂纳米复合材料,对纳米粒子进行了红外光谱(FT-IR)、热重分析(TGA)和透射电镜(TEM)表征,测试了复合材料的热力学性能及介电性能。结果表明:偶联剂可起到桥接作用,将环氧链段接枝到SiO_2粒子上,改善了纳米粒子的团聚现象。接枝后的SiO_2粒子表面与树脂基体有良好的相容性。接枝改性后的SiO_2/环氧树脂复合材料的储能模量大幅提高,冲击强度提高了11.9%,玻璃化转变温度变化不大,SiO_2对复合材料的复介电常数实部和虚部有不同程度的影响。相比不使用偶联剂或直接在复合体系中添加偶联剂的方法,通过偶联剂在SiO_2粒子表面接枝环氧树脂能有效降低复合材料复介电常数的实部和虚部。  相似文献   

4.
氮化硼纳米片/环氧树脂复合材料的制备与热性能研究   总被引:1,自引:0,他引:1  
通过十八胺改性氮化硼纳米片制备了氮化硼/环氧树脂复合材料,并对氮化硼/环氧树脂复合材料的热性能进行了研究。结果表明:加入氮化硼纳米后,复合材料的玻璃化转变温度提高了20℃,当氮化硼含量为7%时,复合材料的玻璃化转变温度最高为223.5℃,热分解温度最高,耐热性能明显提高,储能模量从纯环氧树脂的1 800 MPa增加到2 700 MPa。随着氮化硼含量的增加,复合材料的热膨胀系数逐渐减小,导热系数逐渐增加,从纯环氧树脂的0.139 W/(m·K)提高到氮化硼含量为10%时的0.23 W/(m·K)。  相似文献   

5.
将支化环氧液晶接枝到氧化铝纳米颗粒表面,再将其加入到环氧树脂中制备成复合材料,并对环氧液晶接枝氧化铝/环氧树脂复合材料的热性能进行研究。结果表明:加入环氧液晶接枝氧化铝纳米颗粒后,环氧树脂复合材料的导热系数从纯环氧树脂的0.16 W/(m·K)提高到BLCE-g-Al2O3含量为30%时的0.238 W/(m·K),增加了48.75%;复合材料的初始储能模量比纯环氧树脂的初始储能模量提高了181 MPa,玻璃化转变温度提高了24℃。随着Al2O3填充量的增加,复合材料的热膨胀系数逐渐减小。  相似文献   

6.
氮化硼/环氧树脂复合材料因其优异的导热、机械、电学性能成为高压电气设备中重要的功能材料。为此提出对填料进行氟化剥离处理以提升复合材料的绝缘性能。通过制备含改性氮化硼质量分数分别为1%、2%、4%、8%的环氧树脂复合材料,与未处理填料的氮化硼/环氧树脂复合材料进行对比,研究其在直流电场下表面电荷消散与闪络电压的特性。采用SEM、FTIR、AFM、EDS等手段研究填料改性前后的性质和材料表面闪络处的形貌和元素成分。结果显示:材料表面电荷的消散速度及闪络电压随填料质量分数的增加而提升;对氮化硼填料氟化剥离处理有助于促进复合材料的电荷消散,提高闪络电压。从电荷消散途径、氮化硼禁带宽度、材料表面陷阱效应方面对实验现象进行了解释,为复合材料的无机填料处理提供了一种新的改性方法。  相似文献   

7.
采用两步法将超支化聚芳酰胺接枝到氮化硼粒子表面,并将其掺入到环氧树脂中,制备了一系列复合材料,并对复合材料的微观形貌、玻璃化转变温度、导热性能及电气强度进行了测试研究。结果表明:超支化聚芳酰胺接枝氮化硼粒子在环氧树脂中有较好的分散性,复合材料的电气强度、玻璃化转变温度和导热系数均得到了提高。  相似文献   

8.
采用原位还原法制备了不同的氧化石墨烯/环氧树脂复合材料试样,对复合材料的微观结构及官能团进行了表征,测量了其玻璃化转变温度和宽频介电谱。微观结构分析表明,单层氧化石墨烯与环氧基体结合较好,而多层氧化石墨烯与环氧基体结合较差,导致多层氧化石墨烯/环氧复合材料的玻璃化转变温度下降明显。利用复交流电导率和模量形式,分析了不同温度下复合材料电荷载流子的特性。当温度高于复合材料的玻璃化转变温度时,其直流电导率随温度的变化关系均符合Vogel-Fulcher-Tammann模型;环氧、单层氧化石墨烯/环氧树脂复合材料在高于其玻璃化转变温度时的直流电导主要是电子跳跃电导,其活化能分别为0.58 eV和0.68 eV;而多层氧化石墨烯/环氧树脂复合材料在温度处于120~150℃之间时,其直流电导主要是电子跳跃电导,活化能为0.98 eV,在160℃以上开始出现离子跳跃电导,活化能为0.32 eV。  相似文献   

9.
室温下,通过非水热合成法制备了Ce-MCM-41淬灭剂,通过XRF、FT-IR、XRD等表征显示了Ce4+很好地插入到MCM-41骨架中,TEM表征了Ce-MCM-41的多孔结构,利用二甲基亚砜(DMSO)作为捕获剂通过UV-VIS光谱方法表征了Ce-MCM-41淬灭剂捕获自由基的能力.为了降低燃料电池条件下自由基(HO·)对膜的降解制备了Ce-MCM-41/SPEES复合膜,通过离线Fenton实验和在线加速开路降解实验观察了膜的稳定性,结果显示了Ce-MCM-41/SPEES复合膜的稳定性得到了提高.  相似文献   

10.
通过合成液晶与BN纳米片共混超声而制得功能化氮化硼纳米片(BN-LCP),然后采用该功能化氮化硼纳米片制备了环氧树脂/BN-LCP复合材料,并对其热性能进行研究。结果表明:加入功能化氮化硼纳米片后,环氧树脂/BN-LCP复合材料的初始储能模量比纯环氧树脂提高了748 MPa,玻璃化转变温度提高29℃;随着BN-LCP填充量的增加,复合材料的线膨胀系数逐渐减小,导热系数增大。  相似文献   

11.
周浩然  袁镇  刘晨 《绝缘材料》2020,53(8):32-37
采用水解法制备核壳结构的AlN@Al2O3,采用硅烷偶联剂KH560对其进行表面修饰,并作为导热填料制备了AlN@Al2O3/环氧树脂复合材料。研究AlN@Al2O3粉体含量对环氧树脂复合材料导热性能、热稳定性及其他性能的影响。结果表明:AlN@Al2O3粉体能够均匀地分散于环氧树脂体系中;随着AlN@Al2O3含量的增加,复合材料的导热性能逐渐提高,当AlN@Al2O3质量分数达到50%时,复合材料的导热系数为1.89W/(m·K),是纯环氧树脂导热系数的11.1倍,且复合材料在较长的使用时间内仍能保持较好的导热性能;随着AlN@Al2O3含量的增加,复合材料的热分解温度及玻璃化转变温度均呈现出升高的趋势,当AlN@Al2O3质量分数达到50%时,复合材料失重10%时的温度达到最高值398.88℃,玻璃化转变温度达到147.74℃。  相似文献   

12.
采用偶联剂对纳米BN颗粒进行表面处理,制备了经过表面处理的纳米BN/环氧树脂复合材料。对纳米/BN环氧树脂复合材料进行了微观形貌分析、击穿强度和空间电荷测试。结果表明:随着微米BN添加量的增加,微米BN/环氧树脂复合材料的击穿强度随之降低;随着纳米BN添加量的增加,纳米BN/环氧树脂复合材料的击穿强度先升高后降低。微、纳米BN的添加会降低直流高压电场下复合材料内的平均空间电荷密度。同时,偶联剂处理会降低纳米BN/环氧树脂复合材料在加压时的平均空间电荷密度,增加纳米BN/环氧树脂复合材料在短路时空间电荷的消散速率。  相似文献   

13.
气体绝缘管道输电和气体绝缘组合电器运行过程中盆式绝缘子表面电荷的积累与消散特性对其绝缘破坏具有重要影响,通过纳米颗粒调控环氧树脂表面电荷的动态行为及其闪络特性对提高其安全运行具有重要意义。制备了质量分数为0%、2%、4%、6%和8%的环氧树脂/SiO_2纳米复合材料,获得了其在正、负直流电压作用下表面电位衰减特性、陷阱分布特性及其闪络击穿特性,并建立了基于陷阱调控的闪络击穿失效物理模型。结果表明:正、负电晕充电条件下,SiO_2纳米颗粒均导致环氧树脂表面电位衰减速度减小,纳米质量分数为4%时达到最小值; SiO_2纳米颗粒引入了新的空穴陷阱和电子陷阱,深陷阱能级和陷阱密度均增加,纳米质量分数为4%时达到最大值; SiO_2纳米颗粒提高了环氧树脂的闪络电压,质量分数为4%的纳米复合材料与纯环氧树脂相比,正、负直流电压下闪络电压分别提升了58. 04%和64. 15%。  相似文献   

14.
以聚丙烯(PP)为基料,将经过表面处理和未经过表面处理的不同质量分数纳米氧化镁(MgO)加入到PP中制得纳米MgO/PP复合材料,观察纳米粒子的分散特性,并对复合材料进行动态热机械分析(DMA)和热重分析(TGA),观察纳米复合材料的动态机械特性和耐热性。结果表明:纳米MgO在PP中分散均匀,但加入3%未经表面处理的纳米MgO时,纳米复合材料中有轻微团聚现象。纳米MgO/PP复合材料的玻璃化转变温度约为2℃,纳米MgO的加入会提升粘流态转变温度,增大力学损耗因子,经过表面处理的MgO能整体上增加储能模量。低质量分数纳米MgO的加入不能提高PP的耐热性,当纳米MgO质量分数达到3%时,未经过表面处理和经过表面处理的纳米MgO/PP复合材料的初始热分解温度相比于PP分别提高了76℃和148℃。  相似文献   

15.
等离子体表面改性玻璃纤维增强的环氧树脂性能研究   总被引:1,自引:0,他引:1  
本文基于水轮发电机定子绝缘材料的性能,采用介质阻挡放电在空气中大气压下对无碱玻璃纤维进行表面改性实验,考察改性时间对玻璃纤维表面形貌及化学组成成分变化的影响。其次,用不同处理时间下的玻璃纤维掺杂双酚A型环氧树脂,并制备成复合材料,分别测试了复合材料的拉伸、弯曲等力学参数,对比分析低温等离子体改性时间对复合材料力学性能的影响。实验结果表明,经等离子体处理180s后,玻璃纤维表面出现许多刻蚀坑,并且引入了O-C=O含氧官能团,O-C=O基团含量从未处理的0%上升到7.9%,而复合材料的拉伸、弯曲强度也分别提高了30.97%、37.5%。分析表明,低温等离子体的化学刻蚀作用引起的玻璃纤维表面形貌的变化,以及表层极性基团的引入,是玻璃纤维表面活化处理中的主导过程。采用等离子体表面活化后的玻璃纤维增强环氧树脂,可以使复合材料的力学性能得到显著提高。  相似文献   

16.
为研究微、纳米无机颗粒对环氧树脂击穿强度的影响,制备出了不同含量微、纳米氧化铝,纳米氧化硅/环氧树脂复合材料。通过采用球球电极对试样进行了交流击穿实验,通过实验发现适量的纳米氧化铝颗粒的添加增强了环氧树脂的击穿强度,而微米氧化铝颗粒降低了环氧树脂的击穿强度。通过比较亲水性和疏水性纳米氧化硅颗粒对环氧树脂击穿强度的影响发现,随着亲水性纳米氧化硅颗粒含量的增加,纳米复合材料击穿强度随含量增加而增大,而相同含量的疏水性纳米氧化硅/环氧树脂复合材料的击穿强度低于纯环氧树脂。  相似文献   

17.
以环氧树脂E51、甲基四氢苯酐(MeTHPA)为原料,添加自制增韧剂T、改性叔胺促进剂M-DMP30,制备了E51/MeTHPA体系浇注绝缘材料。测试其固化放热特性、力学性能和玻璃化转变温度等,并对模拟浇注件进行耐冷热循环试验。结果表明:该材料具有固化放热缓慢的特点,同时具有较高的弯曲强度(110.16MPa)、玻璃化转变温度(93.4℃)和良好的耐冷热循环等性能。  相似文献   

18.
环氧树脂/有机蒙脱土纳米复合材料的制备与表征   总被引:13,自引:1,他引:13  
分别采用熔融插层法与溶液插层法制备了环氧树脂/有机化蒙脱土纳米复合材料,并对不同工艺条件下制备的复合材料结构进行了表征。用X射线衍射法(XRD)测试了有机化蒙脱土在被插层前后片层间距的变化,用扫描电子显微镜(SEM)观察了复合材料冲击断面相态结构与蒙脱土在有机相中的分散情况。结果表明环氧树脂分子插入到经有机化改性的蒙脱土片层中,蒙脱土在环氧树脂固化过程中剥离成纳米级颗粒,无序的分散在环氧树脂基体中,且溶液插层法更有利于蒙脱土片层的剥离。通过热重分析(TGA)测试发现,溶液插层法制备的试样中残留的溶剂对复合材料的热性能影响很大。  相似文献   

19.
以尿素和六方氮化硼为原料通过球磨法制备了氨基化改性氮化硼纳米片(BNNS),并将改性前后的BNNS与环氧树脂混合制备BNNS/环氧复合材料,研究氨基化改性BNNS对环氧表面绝缘特性的影响.结果表明:通过球磨法成功将氨基接枝在氮化硼纳米片表面,改善了填料在环氧树脂复合材料中的分散性;相较于纯环氧材料,当改性BNNS的质量分数为0.5%时,BNNS/环氧复合材料的闪络电压提高了26.9%;此外,氨基化改性降低了材料表面的陷阱能级,加速了空间电荷消散速率;填充氨基化改性BNNS后复合材料的介电常数与介质损耗因数均有小幅提升,平衡空间电荷消散与极化弛豫两种效应对复合材料闪络电压的提升有积极作用.  相似文献   

20.
等离子体对环氧树脂材料的表面改性在未来高压输电设备制造有着广泛的应用前景,基于此,采用次大气压辉光放电等离子体处理环氧树脂材料,通过表面电荷测量系统测量表面电位值、表面(体)电导率、闪络电压等手段分析改性表面电荷动态特性。实验结果表明:等离子体对环氧树脂材料的改性处理能有效加快其表面电荷的消散;改性处理后的材料表面电位衰减加快、沿面闪络电压升高;从陷阱能级分布曲线可知,陷阱能级变浅,密度变大,且随着改性时间增长,浅能级深度陷阱密度减小。此外,处理后材料的表面电导率升高一个数量级,体电导率无明显变化。分析表明:一方面浅陷阱能级不利于电荷被材料表面的陷阱所捕获,但有利于被捕获电荷的脱陷;另一方面,材料表面电导率的升高加快了表面电荷沿面迁移的速率。在这两方面的共同作用下,处理后环氧树脂材料表面电荷消散加快,绝缘性能提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号