首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
同杆双回线发生接地故障采用传统跳闸策略时可能会产生负序分量,传统自动重合闸方案在合闸前不判定故障性质,重合失败时将影响系统稳定性。针对该问题,提出了一种适用于带并抗的同杆双回线接地故障改进跳闸与分相自适应重合闸策略。首先,通过建立带并抗的同杆双回线各相之间的耦合模型并对其进行分析,提出了一种能够避免负序分量注入系统的改进跳闸策略。其次,分别对瞬时性故障和永久性故障情况下的故障相并联电抗器电流特征分析,提出了基于故障相并联电抗器微分栅电流的故障性质判据。最后,结合改进跳闸策略和故障性质判据,形成了适用于带并抗的同杆双回线接地故障分相自适应重合闸策略。PSCAD/EMTDC仿真验证了所提改进跳闸与分相自适应重合闸策略能够避免负序分量注入系统,以及在不同接地故障类型、故障位置和过渡电阻情况下都能保证输电线路重合成功率。  相似文献   

2.
The authors present an expert system developed in Turbo PROLOG to identify faulted sections and interpret protective apparatus operation in large interconnected power systems. This expert system is capable of identifying bus faults, line fault sections, and fault sections in the common area of a specific bus and line. Also, the expert system identifies relays or breaker malfunctions. The expert system is expanded to include real-time measurements of current and voltage phasors to classify the type of fault that the faulted section has experienced. When the faulted section is a transmission line, the expert system then selects an appropriate fault location algorithm to compute the fault location in miles. The importance of using a combination of numeric and database algorithms is emphasized  相似文献   

3.
采用虚拟网络加网络操作法的双回线故障计算方法   总被引:2,自引:0,他引:2  
文中在双回线故障端口接入结构固定的虚拟网络,采用对虚拟网络进行网络操作的方法模拟双回线跨线短路故障、断相故障或跨线短路加断相故障,建立起双回线各种故障计算的统一模型。基于线性电路的基本定理,借助于相序参数变换技术,提出了一种针对双回线各种故障计算的新方法。该方法的优点为:①双回线跨线短路故障、断相故障和跨线短路加断相故障具有统一的计算模型和计算方法;②可精确地模拟双回线金属性或非金属性跨线短路故障、完全或不完全断相故障,以及由它们组合而成的各种跨线短路加断相故障;③对双回线是否存在公共母线无特殊要求;④无需形成复合序网,适用于序相两种坐标。  相似文献   

4.
Electric power grids are critical infrastructure for delivering energy from generation stations to load centers. To maximize utilization of assets, it is desirable to increase the power transferred over transmission systems. Reliable protection of transmission systems is essential for safeguarding the integrity and reliability of the power grid. Distance protection is the most widely used scheme for protecting transmission lines. Most existing protection systems use local measurements to make a decision while pilot protection is used in some circumstances. Distance protection may fail under stressed operating conditions, which could lead to cascading faults. This paper proposes a system integrity protection scheme by utilizing wide area measurements. The scheme partitions the system into subnetworks or protection zones and employs current measurements to derive a fault identification vector indicating the faulted zone. Then the fault location is pinpointed based on wide area measurements and network data. The proposed method is able to deal with multiple, simultaneous faults, and is applicable to both transposed and untransposed lines. Evaluation studies based on simulation studies are presented.  相似文献   

5.
For the fault condition in dynamic stability study, balanced faults have mainly been utilized. Recently, however, with the progress of system protective control technologies such as the multiphase reclosing system for a faulted transmission line, the needs for stability software which would be able to calculate simultaneous faults without any restrictions on fault types, total numbers or location, have been increasing. This report presents the newly developed multifault calculation method based on symmetrical components which is able to calculate simultaneous faults without any restrictions on combination of fault types, and total numbers or location. Fault types consist of balanced/ unbalanced ground fault, short-circuit fault, line-out of transmission lines, and short-circuit of series condenser. The proposed method also allows for calculation of faults at an arbitrary location on the line without any topological changes of each symmetrical network even if the faults include line-end faults with ensuring outages. An example was shown to clarify the validity of the proposed method. Moreover, transient stability limits under the various fault conditions also were discussed.  相似文献   

6.
This paper presents an adaptive noncommunication approach for line protections that are able to classify the fault as internal or external with respect to the relay protection zone for most of the faults in radial lines and for all faults in meshed networks. Basically, with a combination of the current traveling waves detected at the relay location due to fault and open switching operations with apparent impedance seen by relay, the remote breaker operation is detected and the faulted line is identified. The protection developed is selective and is not affected by power system oscillations. The system was simulated with the MICROTRAN, the results showing the feasibility of implementing this algorithm.  相似文献   

7.
A new fault location method suitable for multi-terminal transmission lines that combines the advantages of both impedance and traveling wave based methods has been developed and presented in this paper. The proposed method first determines whether the fault is grounded or ungrounded by comparing the magnitude of the ground mode wavelet coefficients at the measurement end. Next, the impedance based method is used to identify the faulted half of the line in the case of two-terminal line and the faulted line section as well as the faulted half of the line section in the case of multi-terminal lines. Finally the fault location is determined by taking the time difference between the first two consecutive aerial modes of the current traveling waves observed at one end of the multi-terminal line. The proposed method has been tested on four- and five-terminal transmission lines with different types of faults, fault resistances and fault inception angles using ATP simulation.  相似文献   

8.
提出了一种基于超高压输电线路并联电抗器故障相电流特性的单相自动重合闸永久故障识别方法。输电线路发生单相故障两端跳闸后,并联电抗器故障相电流流经的回路在瞬时性故障和永久性故障下明显不同,因此利用流过并联电抗器故障相的电流与中性点小电抗器的电流的幅值比就能判别瞬时性和永久性故障,有效地解决了现有自适应重合闸判据在带并联电抗器超高压输电线路上应用难的问题。EMTP 仿真结果和试验系统录波数据都证明该识别方法能准确地区分永久和瞬时故障,有很高的可靠性,可直接应用于目前微机保护装置。  相似文献   

9.
Series compensation has been employed to improve power transfer in long-distance transmission systems worldwide. However, this in turn introduces problems in conventional distance protection. The complex variation of line impedance is accentuated, as the capacitor's own protection equipment operates randomly under fault conditions. This paper proposes two approaches based on travelling waves and artificial neural networks (ANN) for fault type classification and faulted phase selection of series compensated transmission lines.A modal transformation technique, which decomposes the three-phase line into three single-phase lines, is used for this purpose. Algorithms based on two different modal transformations are developed for phase selection and fault classification. Each algorithm is derived from a corresponding truth table. The truth tables are constructed for different types of faults with different faulted phases and different transformation bases.The proposed ANN topology is composed of two levels of neural networks:
  • In level-1, a neural network (ANNF) is used to detect the fault. In level-2, four neural networks (ANNA, ANNB, ANNC and ANNG) are used to identify faulted phase(s), and activated by the output of ANNF if there is a fault.
  • System simulation and test results, which are presented and analyzed in this paper indicate the feasibility of using travelling waves and ANN in the protection of series compensated transmission lines.
  相似文献   

10.
A WAMS (wide-area measurement/monitoring system)/PMU (phasor measurement unit)-based fault location technique is proposed in this paper. The technique uses synchronized fault voltages of two nodes of the faulted line and their neighboring nodes for fault location. Based on these fault node voltages measured by PMUs, line currents between these nodes can be calculated. Then, node injection currents at two terminals of the faulted line are formed from the line currents. Based on the calculated fault node injection currents, fault node can be deduced or fault location in transmission lines can be calculated accurately. Fault location formulas are derived in full details. Case studies on IEEE-14-bus system and a testing network with 500 kV transmission lines including ATP/EMTP simulations are given to validate the proposed technique. Various fault types and fault resistances are also considered.  相似文献   

11.
Diverse transmission line fault location algorithms have been proposed in the past depending on measurements available. Existing algorithms usually require measurements captured from buses of a faulted line. By taking advantage of the bus-impedance matrix technique, this paper presents a possible fault location approach for single-circuit lines utilizing only voltage measurements from one or two buses, which may be distant from the faulted line. With the addition of a fictitious bus where the fault occurs, the transfer impedances of this bus and other buses are revealed as a function of the fault location. Based on the relationship between the bus voltage change due to fault and the transfer impedance, the fault location can be derived. Shunt capacitance of the line is ignored first and then fully considered based on distributed parameter line model. Electromagnetic transients program simulation studies have shown quite encouraging results.  相似文献   

12.
输电线行波测距中雷击与短路故障的识别   总被引:1,自引:1,他引:1  
掌握超高压、高压输电线路上雷电冲击发生的位置和频次等信息,对输电线路的防雷保护及系统运行水平的提高具有重要的理论和现实意义,故而利用现有可检测与定位线路雷击的行波测距装置,提出了一种基于小波包能量谱和暂态行波特征分析的雷击与短路故障识别方法。通过对500kV输电线路的非故障性雷击、故障性雷击以及普通短路故障的仿真研究,提取出电流行波信号的特征和信号各频段的能量分布规律,结合这些特征和规律提出了对3种暂态过程进行识别和分类的具体算法。EMTDC仿真验证了该算法的正确性。  相似文献   

13.
为了综合评估恶劣天气下输电线路故障与二次系统隐性故障导致的多重故障风险,提出了考虑一二次耦合多重故障的电力系统风险评估方法。首先,分析了气象灾害导致输电线路故障的特点,总结了一二次设备耦合多重故障的特点。其次,综合考虑输电线路及保护装置的失效概率,建立了一二次耦合多重故障模型。然后,应用拉丁超立方抽样实现初始故障集的快速生成,进而评估系统失负荷、节点电压越限、支路潮流越限等风险指标。最后,采用IEEE39节点系统对所提方法进行测试。研究结果表明:考虑一二次耦合的多重故障,系统面临的风险更为严重;使用拉丁超立方抽样,可兼顾不同气象分区内线路故障概率分布差异,提高计算效率;通过多维度风险指标排序,能够有效筛选灾害天气落区内影响电网风险的关键线路和母线,为电网风险防控和薄弱环节治理提供决策依据。  相似文献   

14.
基于单端电气量的故障测距算法   总被引:11,自引:1,他引:11  
本文提出了一种单端故障测距算法。根据零序电网不含负荷的特点,利用故障相电路和零序等值电路,推导出了一个精确的接地故障测距模型,消除了接地过渡电阻和对端运行状况的影响。本算法不同于以往的基于频域的正弦稳态算法.利用拉氏变换与Z-变换的关系,由频域变换到Z域,再进行Z反变换转换到时域,是一种基于时问域的测距算法。文章先对该方法进行了理论推导,然后利用EMTP对其进行数字仿真,结果证明了该算法的正确性。  相似文献   

15.
带同杆双回线的T型线路故障分支判定算法   总被引:2,自引:6,他引:2  
针对T型线路中出现同杆双回线的线路结构,提出了判定故障分支的新方法.该方法以六序分量法为基础,当某支路发生故障时,首先求取各支路保护安装处的突变电气量,然后通过正序网络图,计算2个必要的参数用于判别故障支路,区分非同杆双回线故障、同杆双回线的跨线故障,以及同杆双回线的单回线故障.该方法的特点是考虑了同杆双回线的跨线故障,能够确定同杆双回线中的单回线的故障回路以及跨线故障,并且物理意义明确.序电流可以用来区分同杆双回线的同名相跨线故障.同时,进行了大量的EMTP仿真,结果表明支路判断的准确度不受系统运行方式、故障点过渡电阻等因素的影响,并且也能很好地适用于不对称同杆双回线路.  相似文献   

16.
针对不带并联电抗器的超高压输电线路,提出一种基于序分量无功功率的单相自适应重合闸实现方法。当线路发生单相接地故障且故障相两端断路器跳开后,在永久性故障下,线路侧各相电压和电流值经短暂时间过渡到稳态,之后各序分量无功功率基本保持恒定;在瞬时性故障二次电弧尚未熄弧阶段,电弧电压和故障相端电压随电弧拉长不断升高,正序无功与负序无功呈现相反方向的增减变化。基于这一现象,采用线路侧断开处的正序与负序无功功率分量的变化率来区别永久性和瞬时性故障。在二次电弧熄弧瞬间,故障相电压相位会后移90°,此时正序与负序无功功率分别有不同极性的跃变,通过检测序分量无功功率的突变来捕捉熄弧时刻。该方法实现简单,耐过渡电阻能力强,受故障位置影响小,能适用于重负载线路。EMTP仿真验证了其正确性和有效性。  相似文献   

17.
A technique is presented that is suitable for estimating locations of shunt faults. The estimates are reasonably accurate even if the fault resistance is substantial and the transmission line is connected to energy sources at both terminals. The technique uses post fault fundamental-frequency voltages and currents measured at the two line terminals. The measurements need not be synchronized, and the source impedances are not used by the estimation procedure. The mathematical development of the technique is presented. Sample test results using simulated fault data are included.<>  相似文献   

18.
Two new methods are proposed for fault point location in parallel double-circuit multi-terminal transmission lines by using voltages and currents information from CCVTs and CTs at all terminal. These algorithms take advantage of the fact that the sum of currents flowing into a fault section equals the sum of the currents at all terminals. Algorithm 1 employs an impedance calculation and algorithm 2 employs the current diversion ratio method. Computer simulations are carried out and applications of the proposed methods are discussed. Both algorithms can be applied to all types of fault such as phase-to-ground and phase-to-phase faults. As one equation can be used for all types of fault, classification of fault types and selection of faulted phase are not required. Phase components of the line impedance are used directly, so compensation of unbalanced line impedance is not required  相似文献   

19.
输电线路发生故障时,快速准确地确定故障地点并排除故障,对及时恢复供电,提高供电可靠性具有重要意义。该文总结了平行双回线故障测距算法的研究状况,根据测距所需信息来源、测距原理及采用线路模型的不同对平行双回线的测距算法进行了分类,并详细介绍了六序故障分量法的基本原理,最后结合近几年的研究现状对双回线故障测距算法的发展趋势进行了展望。  相似文献   

20.
为提高T接输电线路故障识别算法的精确性与可靠性,提出了一种基于多尺度行波有功功率和概率神经网络的T接输电线路故障识别方法。基于S变换分别计算区内3个行波保护单元多频率下的初始行波平均有功功率,并以此组成T接输电线路故障特征向量样本集。建立概率神经网络故障识别模型,并利用T接线路故障特征样本集对其进行训练和测试,从而识别出故障所在支路。仿真结果表明,所提算法在各种工况下均能快速准确地识别T接输电线路区内外故障所在支路,在近O点故障、数据丢失、噪声影响、CT饱和等情况下也能较好地识别故障支路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号