首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
Since ordinary magnetic field poles of a PM (permanent magnet) motor generate higher harmonic flux, sinusoidal current will cause torque ripple. This is usually removed by short pitch winding, skew slot method, and so on. These methods have a drawback in terms of lower efficiency. Recently, new current control methods have been proposed to realize zero‐torque ripple and high‐efficiency drive at the same time. However, because the optimized reference current waveform obtained by these methods includes zero phase component, normal three‐phase full bridge inverter and dq coordinate control method cannot be used. This paper proposes a new current control method that can achieve zero‐torque ripple and maximum efficiency by using a normal three‐phase inverter. The three‐phase optimum current can be derived by satisfying the following conditions: (1) the direction of the current resultant vector always agrees with that of the electromotive force resultant vector, and (2) the scalar product of the two vectors is held constant. By means of modifying the coordinate transformation angle, this method can also make it possible to compensate torque pulsation error with maximum efficiency using general dq coordinate control method. The proposed method has been verified by experiments. © 2001 Scripta Technica, Electr Eng Jpn, 136(1): 57–64, 2001  相似文献   

2.
Many researchers have attempted to clarify the definitions of active power, reactive power, active current, reactive current, etc. for unbalanced and nonsinusoidal three‐phase situations. The so‐called pq theory has given a new definition of instantaneous reactive power, and it has been discussed and developed by many authors. In this paper, the merits and demerits of the instantaneous reactive power compensator are discussed. It is shown theoretically that applying instantaneous reactive power compensation to unbalanced three‐phase systems has a serious disadvantage in that it causes third‐order harmonic currents on the source side, which problem cannot be avoided. To overcome this problem the authors propose a new approach, and name it the “quasi‐instantaneous” reactive power compensator. It compensates individual‐phase reactive currents. The basic principles of the quasi‐instantaneous reactive current compensator are discussed in detail, and its validity is confirmed using digital simulation. In particular the authors show that the power factor of each phase becomes unity on the source side, but the source currents remain unbalanced when the proposed method is applied. © 2002 Wiley Periodicals, Inc. Electr Eng Jpn, 139(3): 73–81, 2002; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.1162  相似文献   

3.
The immittance converter has an input impedance that is proportional to the admittance of a load connected across its output terminals. In this converter, the output current is proportional to the input voltage and the input current is proportional to the output voltage. Consequently, a constant‐voltage source is converted into a constant‐current source and a constant‐current source into a constant‐voltage source. The immittance converters consisting of only passive elements (inductors L and capacitors C) are suitable for use in the high‐frequency links in power electronics applications. Previously, we proposed several types of immittance converters and some applications to power electronics equipment. In this paper, we propose a new three‐phase immittance converter consisting of three L and C elements each to obtain an alternating current source from a three‐phase voltage source without control. This paper presents a configuration of the new three‐phase immittance converter that operates in either anti‐phase or in‐phase modes between the input voltage and the output voltage, and its voltage–current conversion characteristics and efficiency characteristics. © 2003 Wiley Periodicals, Inc. Electr Eng Jpn, 145(1): 52– 58, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.10169  相似文献   

4.
The dq transformation is widely used in the analysis and control of three‐phase symmetrical and balanced systems. The transformation is the real counterpart of the complex transformations derived from the symmetrical component theory. The widespread distributed generation and dynamically connected unbalanced loads in a three‐phase system inherently create unbalanced voltages to the point of common coupling. The unbalanced voltages will always be transformed as coupled positive‐sequence and negative‐sequence components with double‐frequency ripples that can be removed by some filtering algorithms in the dq frame. However, a technique for modeling unbalanced three‐phase impedance between voltages and currents of same sequences or of opposite sequences is still missing. We propose an effective method for modeling unbalanced three‐phase impedance using a decoupled zero‐sequence impedance and two interacting positive‐sequence and negative‐sequence balanced impedances in the dq frame. The proposed method can decompose a system with unbalanced resistance, inductance, or capacitance into a combination of independent reciprocal bases (IRB). Each IRB basis belongs to one of the positive‐sequence, negative‐sequence, or zero‐sequence system components to facilitate further analysis. The effectiveness of this approach is verified with a case study of an unbalanced load and another case study of an unbalanced voltage compensator in a microgrid application. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
The cascaded H‐bridge (CHB) multilevel inverter is being recognized as the most suitable topology for high‐power medium‐voltage power quality conditioning applications. This paper presents mathematical modeling and effective controller design methodology for the CHB‐based active power filters (APFs), which achieves dynamic reactive power and harmonic compensation. The most crucial problems in CHB‐APF control are the simultaneous requirements of both accurate harmonic current compensation and the dc‐link voltage stabilization among the H‐bridges, which is the prerequisite for the stable operation of CHB‐APF. To achieve dc‐link stabilization, a novel voltage balancing algorithm is proposed by splitting the dc‐link voltage control task into two parts, namely, the average voltage control and the voltage balancing control, where the sine and cosine functions of the phase angle of the fundamental component of the grid voltage are used, respectively. To ensure accurate phase tracking, a novel phase‐locked loop (PLL) is proposed by using the adaptive linear neural network (ADALINE), where the grid voltage background distortion is also taken into account. The superior performance of the ADALINE‐PLL is validated by comparison with the existing PLLs in literatures. Furthermore, the proportional‐resonant (PR) controller is used for the reference current tracking. A separate ADALINE algorithm is applied for reference current generation (RCG) for the CHB‐APF. The excellent performance of the ADALINE‐based RCG scheme is verified by comparison with the existing RCG schemes, namely, the low‐pass filter approach and the single‐phase p ? qmethod. The experimental results on the three modules CHB‐APF are presented, which verifies the effectiveness of the proposed control algorithms. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Quasi‐Z source indirect matrix converter (IMC) combines both advantages of conventional IMC and quasi‐Z source inverter, for example, no direct current (DC) link capacitor, compact all‐silicon power converter, bidirectional power flow, input power factor controllable, and high voltage gain; moreover, it does not require additional input filter, because continuous quasi‐Z source network integrates LC filter function. However, there is no literature to disclose common mode voltage (CMV) issue of quasi‐Z source IMC. In this paper, for the first time, the CMV issue and reduction of quasi‐Z source IMC are investigated. Firstly, the CMV of quasi‐Z source IMC is analyzed when using current typical modulation method, which follows the brief introduction of topology and modulation method for quasi‐Z source IMC, and the factors that affect the CMV are figured out; Secondly, referring to the CMV reduction methods of conventional IMC, two solutions named as Methods I and II to reduce the CMV for quasi‐Z source IMC are developed, which are achieved in the inverter stage; the third CMV reduction method is proposed in the rectifier stage through redefining the six sectors of the rectifier stage, which can implement zero current commutation. Experimental bench is built to test three approaches for reducing the CMV of quasi‐Z source IMC. Comparative evaluation is carried out between three methods and conventional modulation method. Experimental results verify that three methods can significantly reduce the CMV of quasi‐Z source IMC, with the CMV peak value reduction of 42%, but they present different features in terms of input and output current THDs, switching loss, CMV root mean square (RMS) value, modulation index limitation, and so on. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
In recent years, parallel operation of inverters is employed to increase reliability and capacity in an uninterruptible power supply (UPS) system. A phase error in PWM carrier‐signals of each inverter causes high‐frequency loop current between inverters. Therefore, the PWM carrier‐signal of each inverter should be adjusted in phase. This paper proposes a detection method of phase error in PWM carrier‐signal and its application to synchronization control for parallel‐connected inverters. A simple definite‐integral circuit achieves detection of the carrier phase error from high‐frequency loop current using no signal line between inverters. The detected carrier phase error is applied to synchronize the PWM carrier‐signal through a PI compensator, and then the high‐frequency loop current can be suppressed. Several experimental test results show the validity of the proposed detection method and synchronization control. © 2006 Wiley Periodicals, Inc. Electr Eng Jpn, 157(1): 63– 71, 2006; Published online in Wiley InterScience ( http://www.interscience.wiley.com ). DOI 10.1002/eej.20143  相似文献   

8.
The term immittance converter refers to an impedance–admittance converter. The immittance converter has an input impedance that is proportional to the admittance of the load connected across output terminals. In this converter, the output current is proportional to the input voltage and the input current is proportional to the output voltage. Consequently, it converts a constant‐voltage source into a constant‐current source and a constant‐current source into a constant‐voltage source. It is well known that the quarter wavelength transmission line shows immittance conversion characteristics. However, it has a very long line length for the switching frequency, and is not suitable for power electronics applications. We thus proposed immittance converters that consist of lumped elements L, C and show improved immittance conversion characteristics at a resonant frequency. A three‐phase constant‐current source is proposed in this paper. It is possible to realize this by a simple circuit using an immittance converter. In this paper, circuit operation, characteristic equations, and results of simulation are described. © 2005 Wiley Periodicals, Inc. Electr Eng Jpn, 151(4): 47–54, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20078  相似文献   

9.
The matrix converter is a three‐phase AC‐to‐AC direct converter without any energy storage requirement such as DC link capacitors. However, the matrix converter has some practical problems such as the necessity for bidirectional power devices, necessity for special commutation sequence, and complexity of the control method. Thus, there are no practical systems in which matrix converters are used. In this paper, the control strategy for matrix converters with basic configuration is investigated so as to realize practical matrix converters. First, the necessity of the phase detector for the input voltage and the output current sensor is pointed out from the viewpoint of realization of the basic operation. With these sensors required in the basic configuration, the instantaneous control of the output current is realized. It is also pointed out that three‐phase switching is effective in improving the input current waveforms. Some methods for implementation of three‐phase switching are proposed. The effectiveness of the proposed control methods is confirmed by some experimental results employing a test system. © 2005 Wiley Periodicals, Inc. Electr Eng Jpn, 151(4): 55–64, 2005; Published online in Wiley InterScience ( www.interscience. wiley.com ). DOI 10.1002/eej.20031  相似文献   

10.
A matrix converter (MC) is a three‐phase AC‐to‐AC direct converter without any energy storage requirement. It is expected to be a next‐generation converter by reason of possibilities of small size and high efficiency. At present, there are some problems preventing it from being used practically. One of the problems is the distortion in the input current. The control methods proposed so far have not realized sufficient reduction of the input current harmonics compared with conventional PWM rectifiers. As a solution to these problems, many approaches have been proposed. In the present paper, an improved PWM method that can achieve both sinusoidal input and output currents simultaneously is considered. In this method, the MC is treated as a controlled voltage source viewed from the load side. On the other hand, it is treated as a controlled current source viewed from the line side. The proposed control method is based on the mathematical expression of the function of the PWM operation of MC. To improve the input current waveform, two line‐to‐line voltages of the three‐phase line are used to control the output current. The output duty ratio of the two line‐to‐line voltages is utilized to improve the input current waveform without affecting the controllability of the output current. In addition, the compensation of the variations in the line voltage and the output current are introduced. In this way, the proposed method can realize the sinusoidal input and output currents. The effectiveness of the proposed control method is confirmed by some experimental results employing a laboratory prototype. © 2007 Wiley Periodicals, Inc. Electr Eng Jpn, 161(1): 66–76, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20242  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号