首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
用化学沉积法制备石墨烯(GP)/Ni OOH/Ni(OH)2多层次多孔复合材料。SEM分析发现:Ni OOH/Ni(OH)2在石墨烯表面形成多孔结构,负载了多孔Ni OOH/Ni(OH)2的石墨烯又进行堆积。复合材料的循环伏安测试表现出典型的赝电容特性,比电容高于纯Ni OOH/Ni(OH)2。石墨烯与Ni OOH/Ni(OH)2的配比对电化学性能影响较大,样品GP/Ni-30(石墨烯为0.1 g,1 mol/L Ni SO4为30 ml)的比电容在电流为2 A/g、10 A/g电压为0~0.45 V时分别为2 178 F/g和1 444 F/g。  相似文献   

2.
采用化学沉积法制备介孔碳/Ni OOH/Ni(OH)2复合材料,扫描电子显微镜法(SEM)图片显示,Ni OOH/Ni(OH)2在介孔碳表面上形成了多孔结构。通过改变反应物的加入量得到不同比例介孔碳和Ni OOH/Ni(OH)2的复合材料,电化学性能测试表明,电极材料MCN/Ni-30性能最佳,首次放电比电容可达1 358.8 F/g。分别以MCN/Ni-30和活性炭为正负极组装成混合电容器,通过改变正负极质量比研究介孔碳/Ni OOH/Ni(OH)2-活性炭混合电容器的电化学性能。结果表明:当正负极质量比为1∶1.5时,电流密度为200 m A/g,混合电容器在1 mol/L KOH电解液中的比电容为126.5 F/g,比能量达到44.96 Wh/kg。  相似文献   

3.
采用电化学沉积法,以碳纳米管(CNT)为基体沉积Ni(OH)2,热处理制备NiO/CNT复合电极.采用XRD、SEM、TEM、循环伏安和恒流充放电,研究了电沉积电流密度对复合电极的影响.沉积电量为9 C时,随着电流密度的增加,NiO易沉积在电极表面,形成块体并阻塞离子通道,使复合电极的比电容下降.以1 mA/cm2制备的复合电极,以0.4 A/g、20.0 A/g充放电时,比电容分别为1 686 F/g和926 F/g.  相似文献   

4.
以十二烷基硫酸钠(SDS)、尿素分别为模板和沉淀剂,在80℃下与NiCl2·6H2O反应6 h,合成了前驱体Ni(OH)2.前驱体在260℃下煅烧5 h后,得到超级电容器电极材料介孔NiO.材料的孔径约为5 nm,比表面积为305 m2/g,在0.5 A/g的电流下,比电容可达685 F/g.  相似文献   

5.
通过化学沉淀法,将氧化石墨烯与硫酸镍、过硫酸铵、氨水反应,制备出Ni(OH)_2/GO复合材料。通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)以及傅里叶变换红外光谱(FT-IR)对样品的结构和形貌进行表征,并使用循环伏安法(CV)、恒电流充放电法研究了样品的电化学性能。结果表明:Ni(OH)_2/GO复合材料呈现为大小不等的薄片状结构。作为电极材料,复合材料表现出优良的电化学性能,在1.0A/g的电流密度下,比电容达到476F/g,比纯Ni(OH)_2的比电容(387F/g)高出约20%。制备的Ni(OH)_2/GO复合电极材料适合作为超级电容器的电极材料。该方法提供了一种简单而温和的途径将氢氧化镍分散在氧化石墨烯的表面上,可用于能量存储和转换装置中其它金属氢氧化物/GO复合材料的制备。  相似文献   

6.
直接还原高锰酸钾制备CNT/MnO2复合材料   总被引:2,自引:0,他引:2  
直接还原高锰酸钾(KMnO4)制备了碳纳米管(CNT)/MnO2复合材料。用XRD、SEM和TEM等对复合材料进行形貌和结构分析,发现MnO2均匀地包覆在CNT表面。循环伏安、恒流充放电测试表明,复合材料的比电容较高,循环性能良好,以1 A/g、20 A/g放电的比电容分别为200.3 F/g和120.8 F/g,第2 000次循环(20 A/g)时的电容保持率为94.7%。  相似文献   

7.
以常压下脱水干燥的间苯二酚(R)/甲醛(F)凝胶基树脂为前驱体,分别采用Na OH、KOH原位活化的方法制备出具有高比表面积、高比电容量的多孔炭材料。通过氮气吸附、循环伏安及恒流充放电等测试方法对多孔炭的结构与性能进行了表征。结果表明,KOH活化样品的孔结构比Na OH活化样品更发达,电化学性能更优异;KOH与RF凝胶质量比为2∶1时,活化制得的多孔炭比表面积达到1 974 m2/g;在7 mol/L KOH电解液中,KOH活化多孔炭的比电容最高达到266 F/g,在10 A/g的电流密度下容量保持率为70%以上。  相似文献   

8.
在70℃下用95 g/L(NH4)2S2O8+0.3 g/L OP-10+3%H2SO4+15 g/L Ni2SO4的溶液对镍箔集流体进行化学刻蚀,研究了化学刻蚀对电化学双电层电容器(EDLC)电化学性能的影响。化学刻蚀提高了镍箔集流体的表面粗糙度,与未刻蚀时相比,电极的等效串联内阻由2.11Ω降至0.88Ω。以0.2 A/g的电流在0.05~1.00 V循环,活性炭的单极比电容为163.0 F/g,比未刻蚀时提高50.9%,循环200次的电容保持率为91.3%;当电流增加至6.0 A/g时,比电容为127.8 F/g。  相似文献   

9.
以石油焦为原料、KOH为活化剂,制备了超级电容器用多孔炭.微波法制备的多孔炭的BET比表面积为1 951.06cm2/g,比电容为288 F/g;电炉法制备的多孔炭的BET比表面积为2 376.73 m2/g,比电容为256 F/g.微波法制备的多孔炭比电炉法制备的多孔炭的有序度更大.  相似文献   

10.
以KMnO4和MnCl2为原料并添加一定量的SnCl4,采用常压回流液相共沉淀法合成了Sn改性MnO2电极材料。利用X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)和电化学方法对其进行物理表征和电化学性能研究。结果表明反应溶液pH值对MnO2的结构、形貌和电化学性能影响很大。反应溶液为酸性和碱性时分别得到γ-MnO2和δ-MnO2。在pH=9时制备的Sn改性MnO2具有良好的电容性能,在0.5 A/g下,比电容达到176 F/g,比未改性MnO2提高了66%,电流密度增大到2.0 A/g时,比电容依然保持在166 F/g。在1.0 A/g下进行连续充放电测试,1 000次充放电循环后,比电容仍保持在165 F/g,容量衰减小于6%。Sn改性MnO2是一种理想的超级电容器电极材料,具有良好的高倍率充放电性能和容量保持能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号