首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The theory and algorithms of the proposed technique have been presented in Part I of this two-paper set. In Part II of this two-paper set, the proposed technique is evaluated by considerable simulation cases simulated by the Matlab/Power system Blockset simulator. For the proposed fault detector, the trip time achieved can be up to 3.25 ms and the average value of trip times is about 8 ms for both permanent and arcing faults on transmission lines. For the proposed fault locator, the accuracy can be up to 99.99% and the error does not exceed 0.45%. Moreover, the proposed arcing fault discriminator can discriminate between arcing and permanent faults within four cycles after fault inception. It has proven to be an effective tool to block reclosing on the permanent faults in the computer simulations. The simulation results also demonstrate that the presented extended discrete Fourier transform algorithm eliminates effectively the error caused by exponentially decaying dc offset on fundamental and harmonic phasor computations. Finally, a test case using the real-life measured data proves the feasibility of the proposed technique.  相似文献   

2.
In this paper, a novel two-stage numerical algorithm devoted to fault distance calculation and arcing faults recognition is presented. The first algorithm stage serves for the fault distance calculation. The fault distance is calculated from the fundamental frequency phase voltages and current phasors, thus utilizing the positive- and the zero-sequence impedances of the line as input parameters. The second algorithm stage serves for the arc voltage amplitude calculation. It utilizes the fault distance calculated in the first algorithm stage as well as the third harmonics of the terminal phase voltage and line current phasors, respectively. From the calculated value of arc voltage amplitude it can be determined whether the fault is transient arcing fault or permanent arcless fault. The phasors needed for algorithm execution are calculated by using the Discrete Fourier Technique. In this paper, the solution for the most frequent phase-to-ground faults is given. The results of algorithm testing through computer simulation and real field data records processing are given.  相似文献   

3.
In this paper a new numerical algorithm for arcing faults detection and fault distance estimation is presented. The solution is given in the time domain. It is based on the line terminal voltages and currents processing. A simple new mathematical model of arc voltage is introduced in the estimation. Thereby, the more accurate approach to fault location is derived, particularly for the close-in faults. The new algorithm can be utilized for blocking the automatic reclosing. The unknown model parameters, including the line resistance and inductance, fault resistance and arc voltage amplitude, are estimated by using the least error squares method. The new algorithm is successfully tested through computer simulation and laboratory tests  相似文献   

4.
High-impedance faults are accompanied by variations in the 60 Hz and harmonic components. An approach that accounts for the time-varying nature of the fundamental and harmonic components is developed. This approach is based on Kalman-filtering theory to obtain the best estimation of the time variations of the fundamental and harmonic components. Four actual recorded data sets for staged arcing fault on different types of soil are investigated by the proposed Kalman-filtering technique. The time variations of fundamental and low-order harmonic components significantly contribute to high-impedance fault detection using the features presented  相似文献   

5.
In this paper a new numerical algorithm for medium voltage overhead line protection and autoreclosure is presented. It is based on one terminal data processing and it is derived in the time domain. In the algorithm, the fault location and fault nature (arcing or arcless fault) are estimated using the linear least error squares estimation technique. An arc occurring on the fault point during arcing faults on overhead lines is included in the consideration of the problem. Additionally, by introducing the pre-fault load current in the existing model, better algorithm performances are achieved. The algorithm is derived for the case of a three-phase symmetrical fault. The computer simulation results of the algorithm testing are presented and, in particular, the algorithm sensitivity to arc elongation effects and processing of the signals in the presence of harmonics is tested and analysed.  相似文献   

6.
An adaptive fault detection/location technique based on a phasor measurement unit (PMU) for an EHV/UHV transmission line is presented. A fault detection/location index in terms of Clarke components of the synchronized voltage and current phasors is derived. The line parameter estimation algorithm is also developed to solve the uncertainty of parameters caused by aging of transmission lines. This paper also proposes a new discrete Fourier transform (DFT) based algorithm (termed the smart discrete Fourier transform, SDFT) to eliminate system noise and measurement errors such that extremely accurate fundamental frequency components can be extracted for calculation of fault detection/location index. The EMTP was used to simulate a high voltage transmission line with faults at various locations. To simulate errors involved in measurements, Gaussian-type noise has been added to the raw output data generated by EMTP. Results have shown that the new DFT based method can extract exact phasors in the presence of frequency deviation and harmonics. The parameter estimation algorithm can also trace exact parameters very well. The accuracy of both new DFT based method and parameter estimation algorithm can achieve even up to 99.999% and 99.99% respectively, and is presented in Part II. The accuracy of fault location estimation by the proposed technique can achieve even up to 99.9% in the performance evaluation, which is also presented in Part II  相似文献   

7.
针对低压系统故障电弧问题设计了一套故障电弧模拟测试系统,该系统含有上位机模块、下位机控制模块等,可以实现切割电缆、碳化路径及点接触3种类型故障电弧输出。同时,采用Logistic识别算法作为故障电弧保护电器检测的辅助判据。通过对系统中存在的不确定因素进行分析,选取切割电缆模块中的切割速度、电缆线径与电流幅值,以及点接触模块中的拉弧速度与接触面积作为主要影响因素进行研究。研究表明,在特定条件下电流零休时间会呈现趋势性变化,改变单一条件可使其变化1 ms左右。依据研究结果选取最合适的起弧条件,以提高故障电弧保护电器检测结果的准确性。  相似文献   

8.
配电网弧光接地故障会产生严重的弧光过电压并释放大量热能,从而造成设备损坏,引发火灾并危害人员生命安全。针对传统电弧模型无法正确描述电弧不稳定燃烧过程中的间歇性燃熄弧和随机波动等问题,提出了基于随机控制变量的改进Mayr电弧模型;通过对故障特征的分析,提出归一化谐波能量描述方法,实现了包括高阻故障在内的不同接地故障情况下谐波含量的一致性描述和整定,并根据归一化谐波能量在时间尺度上的随机分布特性以及故障波形畸变特征,实现对弧光接地故障的准确辨识。最后,结合配电网新型智能测量终端的发展应用,提出基于三相电压和零序电流录波数据的弧光接地故障综合辨识算法,并通过PSCAD仿真算例和某10 kV配电网的实测故障试验数据对算法的可靠性和安全性进行验证。  相似文献   

9.
The performance of the scheme of Pramod Agrawal (1989) for ultra-high-speed (UHS) protection of EHV transmission lines under arcing fault conditions is described. The arc with reignition effect is modeled, and a method for digital simulation of the superimposed arc voltage is discussed. Simulated tests have shown that the arc voltage has significant higher-frequency components. These tests also confirm that the arcing fault response repeats every half-cycle for a fault inception angle of the voltage from 0 to 90°, which is a significant improvement over schemes based on traveling-wave phenomena which have been considered a failure for faults at 0°C fault inception  相似文献   

10.
Power distribution automation and control are important tools in the current restructured electricity markets. Unfortunately, due to its stochastic nature, distribution systems faults are hardly avoidable. This paper proposes a novel fault diagnosis scheme for power distribution systems, composed by three different processes: fault detection and classification, fault location, and fault section determination. The fault detection and classification technique is wavelet based. The fault-location technique is impedance based and uses local voltage and current fundamental phasors. The fault section determination method is artificial neural network based and uses the local current and voltage signals to estimate the faulted section. The proposed hybrid scheme was validated through Alternate Transient Program/Electromagnetic Transients Program simulations and was implemented as embedded software. It is currently used as a fault diagnosis tool in a Southern Brazilian power distribution company.  相似文献   

11.
基于电压谐波信号分析的单相自适应重合闸   总被引:33,自引:6,他引:33  
李斌  李永丽  曾治安  梅云 《电网技术》2002,26(10):53-57
自适应自动重合闸技术具有诸多传统重合闸技术所不具有的优势。经研究提出了一种新型的区分输电线路单相瞬时性故障与永久性故障的方法。当故障发生时,对于不同的故障性质(瞬时性故障或永久性故障),重合闸安装处母线的电压信号在不同时刻所蕴含的谐皮分量有所不同。根据对故障电弧电压信号的具体分析,提出了判别故障性质的奇次谐波能量判据,该判据适用于发生金属性故障或经过渡电阻故障时判故障性质。通过EMTP软件中的TACS功能对电弧故障的大量仿真,验证了该算法的有效性和准确性。且该判据仅利用了电压信号,所以基于此判据的单相自适应合闸是易于实现的。  相似文献   

12.
In this paper, an overhead lines protection numerical algorithm, based on one terminal data and derived in the time domain, is presented. The fault location, direction and its nature (arcing or arcless fault) are estimated using the least error squares technique. The faulted phase voltage is modeled as a serial connection of fault resistance and arc voltage, offering more sophisticated line protection. The algorithm can be applied for both ordinary and the high impedance faults detection, distance protection, intelligent autoreclosure, as well as for the purpose of directional relaying. The approach presented does not require the line zero sequence resistance as an input datum. The algorithm is derived for the case of the most frequent single-phase to ground unsymmetrical faults. The results of algorithm testing through computer simulation are given. The influence of remote infeed, fault resistance, higher order harmonies, power system frequency, network topology, line parameters and other factors are investigated and systematically presented. Finally, an example of real life data processing is given  相似文献   

13.
为了解决同杆四回线故障情况复杂,跨线故障时无法应用单回线故障选相方法的难题,提出了一种基于故障电流双反相量的同杆四回线故障选相方法。同杆四回线发生一回线内或两回线间跨线故障时,对四回线各相电流进行变换,可得故障相电流的双同及双反相量。通过对故障电流边界条件的分析可知,不同类型故障时故障电流的3个双反相量分别具有不同的幅值和相位特点。以此为基础,提出了在一回线内故障和两回线间跨线故障时能够准确识别故障回线和故障相的同杆四回线故障选相方法。仿真表明本方法在不同的负载电流、过渡电阻、故障位置及故障类型下均能进行有效的故障选相。  相似文献   

14.
Power systems faults are unavoidable events which affect distribution networks reliability. The fault process in underground cables is gradual and characterized by a series of sub-cycle incipient faults associated with an arc voltage. These events often are unnoticed and eventually result in permanent faults. This paper presents an incipient fault location formulation for distribution networks with underground cables. Presented formulation is composed by a time-domain system model and parameter estimation strategy. System model derivation considers distribution networks inherent features as unbalanced operation and underground distribution cables capacitive effect. Further, incipient fault characteristics as fault arc voltage are considered. The proposed system model is an overdetermined linear system of equations in which the fault location is estimated through a parameter estimation approach. Parameter estimation is made through a Non-Negative Weighted Least Square Estimator (NNWLSE). Smoothing and curve-fitting procedures are applied to input data aiming to decrease the noise effect. A load current compensation strategy is proposed to reduce its effect in the fault current estimation and a back substitution method is proposed for estimation refinement. Validation is performed using real-life distribution network with underground cable data simulated on ATP/EMTP. Test results are encouraging and demonstrate the method’s potential for real life applications. An average error of 1.95% is obtained when compared with 6.48% derived using the state-of-art.  相似文献   

15.
To avoid automatic reclosing on permanent faults, a new numerical algorithm for power transmission network arcing faults detection has been developed. Some important features of a long arc in air are investigated and used as a basis in the algorithm design. The fact that the nonlinear arc behavior influences other voltages and currents distorting them, offered an opportunity to detect the arc by measuring and processing the transmission line terminal voltage and current. A series of simulation studies have shown that the algorithm can be used as an effective tool for arcing faults detection.<>  相似文献   

16.
串联电弧故障电流波形受负荷类型影响较大,利用电流特征构建通用故障判据难度较大。为识别故障点电弧电压,提出了一种基于电压特征能量的串联电弧故障检测方法。首先,通过分析故障点电弧电压及监测点故障电压特征规律,对故障信息的特征频带选择进行了论证。然后,以不同负荷下的电弧电压波形特征归类为依据,提出了基于电压特征频带全域能量幅值和敏感相位域能量相位信息的故障检测方法。最后,利用全域总能量幅值和敏感域能量相位映射统计比实现了综合故障检测策略的构建。试验结果表明,所提方法在不同线路参数和测试负荷下的故障检测准确率超过了98%且无误检发生,验证了其有效性。  相似文献   

17.
A distance protection scheme for transmission lines based on analyzing the measured voltage and current signals at the relay location using fast orthogonal search (FOS) is presented in this paper. FOS has the ability to accurately provide fast estimate of the voltage and current fundamental frequency phasors that are required for a digital distance relay. Compared to the conventional FFT, FOS can estimate the fundamental phasors with higher accuracy and less number of samples. The proposed scheme has been tested on a transmission line model to verify the merit of this approach. The tests presented include solid ground faults, phase faults, and high impedance faults at different fault locations and loading conditions. The proposed scheme can classify all fault cases in less than one cycle after the inception of the faults.  相似文献   

18.
分析了大型水轮发电机绕组基波电势的分布特征,推导了定子单相接地故障时的基波零序电压故障分量的相位与过渡电阻、故障位置的关系,提出了一种综合利用基波零序电压故障分量幅值和相位信息的定子单相接地故障定位新原理,并对该定位方法的误差进行了理论分析。理论分析和仿真测试结果表明:所提方法适用于大型水轮发电机,且不受中性点接地方式的影响,提高了故障定位的准确性。所提方法简单易行,仅需测量基波零序电压和相电压,无需增加额外设备。  相似文献   

19.
基于电弧复小波检测的单相自适应重合闸   总被引:11,自引:0,他引:11       下载免费PDF全文
提出一种单相自适应重合闸的新方案。该方案利用复小波分析来检测电弧产生的谐波,并以此区分输电线路的单相瞬时性故障和永久性故障。故障发生后,对于不同的故障性质,线路首端重合闸安装处的电压谐波含量是不同的。根据电压谐波含量的特征,提出利用复小波相位和幅值的新算法综合判别来快速确定线路的故障性质。该方法可以在熄弧之前进行判断,保障了最佳重合时间。线路故障仿真验证了该算法的有效性和实用性。  相似文献   

20.
A high impedance arcing fault due to a leaning tree in medium voltage (MV) networks is modeled and experimentally verified. The fault is represented in two parts; an arc model and a high resistance. The arc is generated by a leaning tree towards the network conductor and the tree resistance limits the fault current. The arcing element is dynamically simulated using thermal equations. The arc model parameters and resistance values are determined using the experimental results. The fault behavior is simulated by the ATP/EMTP program, in which the arc model is realized using the universal arc representation. The experimental results have validated the system transient model. Discrete wavelet transform is used to extract the fault features and therefore localize the fault events. It is found that arc reignitions enhance fault detection when discrete wavelet transform is utilized  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号