首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
针对离网并联逆变器的功率分配问题,以及负载不平衡条件下三相电压不平衡度过大,设计了微电网应对负载不平衡的控制策略。设计了三相电网电压的龙贝格观测器,并证明其稳定性。该观测器同样可用于三相电流的观测。采用分序虚拟阻抗,独立配置正序虚拟阻抗和负序虚拟阻抗,使逆变器输出功率均分,并减小负序网络下线路阻抗引起的不平衡电压。改进有功下垂方程,使母线电压保持在传统有功下垂方程给定电压值附近。在Matlab/Simulink仿真平台和搭建的逆变器并联系统中,验证该控制策略的有效性,仿真结果和实验分析表明:设计的观测器能够准确地获取电压和电流的正、负序分量;此处控制策略在功率均分的前提下,大幅降低了三相电压不平衡度,提高了电能质量。  相似文献   

2.
通过逆变器输出阻抗的分析,得出了三相逆变器输出电压不平衡的根本原因,提出通过设计适当的闭环控制来减小逆变器输出阻抗,以减小三相输出电压不平衡度的控制思想。本文根据三相输出电压不平衡时的特点,提出了通过DSC提取出负载电压及电感电流中的正序、负序分量,分别在正序dq坐标系及负序dq坐标系下对正序分量及负序分量采用电压、电流的双环前馈解耦控制的方案,用于对逆变器负载不平衡引起的输出电压不平衡的控制。闭环输出阻抗的分析显示,该控制方案在整体减小闭环系统输出阻抗的同时,能够大幅有效地减小负序分量对应输出阻抗。仿真与实验结果证明,该控制方案对不平衡负载引起的输出电压失衡有较好地控制作用。  相似文献   

3.
当微电网孤岛运行时,不平衡负载的接入不仅会造成逆变器输出电压畸变,也会影响多逆变器并联运行的功率均分。首先分析不平衡负载造成三相逆变器输出电压畸变的根本原因。在此基础上,结合分裂电容三相四线制拓扑和三维空间矢量脉宽调制(3D-SVPWM),提出一种零轴控制策略,实现输出电压零序分量的抑制和分裂电容的均压控制;同时,采用准谐振控制实现对输出电压负序分量的抑制。针对基于下垂控制的多逆变器并联运行情况,详细分析不平衡负载对输出功率均分的影响和基本关系,提出一种改进分序虚拟阻抗下垂控制方法,基于二次广义积分构造虚拟阻抗来减小各序分量下输出阻抗的差异,有效解决了不平衡负载造成的输出负序功率和零序电流无法均分的问题。仿真和实验结果验证了所提出方案的有效性。  相似文献   

4.
在电网电压不平衡并网逆变器瞬时功率数学模型基础上,分析了传统虚拟同步发电机(virtual synchronous generator,VSG)控制在电网电压不平衡时存在的问题:逆变器输出电流三相不平衡,输出有功功率及无功功率出现2倍电网频率波动,提出了一种改进型VSG控制策略。改进后的控制策略在dq坐标系下,利用平衡电流VSG控制得到基准正序电流指令,结合电网电压不平衡参数以及瞬时功率数学模型,得到不同控制目标下,并网逆变器正、负序电流指令值,并分别对正、负序电流指令进行跟踪得到正、负序电压调制信号,将正、负序电压调制信号合成为最终调制信号。改进后的VSG控制策略不改变VSG控制机理,保留VSG原有控制特性,分别实现了输出电流三相平衡,抑制有功或无功功率2倍电网频率波动的控制目标。仿真及实验结果表明所提出控制策略的有效性。  相似文献   

5.
三相四线制微源逆变器在不平衡系统中具有独特优势,因此可作为微电网中变流器拓扑。为了改善微电网系统离网运行工况下带不平衡负载时的供电质量,提出一种改进负序控制方法。基于对称分量法和叠加原理对三相微源逆变器在不平衡负载下产生三相输出电压不对称的机理进行系统分析,得到了输出电压正序、负序、零序分量不同的补偿特性。设计了一个简单可行的同步正/负序参考系控制器,有效地补偿了不平衡负载引起的微源逆变器输出电压畸变,保证了微源逆变器在不平衡负载下能维持三相平衡输出电压。最后通过仿真和实验验证了理论分析和所提控制方法的正确性。  相似文献   

6.
为解决多逆变器并联系统输出级电压出现三相不对称的问题,在此提出一种基于主从控制的多逆变器并联系统输出级电压不平衡度改善策略.首先分析非对称负载导致多逆变器并联系统输出级电压出现三相不对称的原因,进而采用基波旋转坐标变换的方法将负载电流中的正负序分量分离出来,利用其余从逆变器可用容量来补偿负载电流中的全部负序分量,而主逆变器仅提供负载电流中的基波分量,并维持逆变器输出端电压稳定.所提控制策略将电能质量治理功能嵌入到从逆变器控制策略中,有效降低了输出端电压的不平衡度.最后,基于PSCAD仿真对所提控制算法的有效性进行了验证.  相似文献   

7.
申小玲  郭昌海 《电气传动》2021,51(15):25-30
针对多逆变器并联系统输出侧电压不平衡的问题,提出一种基于主从控制的多逆变器并联系统输出级电压不平衡度抑制策略,旨在提升电压质量.首先对逆变器输出电压进行分析,得出负载电流中的负序分量是导致逆变器输出电压三相不对称的原因,进而提出基波旋转坐标变换的方法将负载电流中的正负序分量分离出来,其中负载电流中的全部负序分量由从逆变器承担,而主逆变器仅提供负载电流中的基波分量,并维持逆变器输出端电压稳定.所提控制策略将电能质量治理功能嵌入到从逆变器控制策略中,有效降低了输出端电压的不平衡度,避免了增加额外的电能质量治理装置.最后,基于PSCAD仿真和实验对所提控制算法的有效性进行了验证.  相似文献   

8.
为解决多逆变器并联系统输出端电压出现三相不对称的问题,本文提出一种基于主从控制的多逆变器并联系统输出级电压不平衡度改善策略.首先,分析非对称负载导致多逆变器并联系统输出级电压出现三相不对称的原因.其次,采用基波旋转坐标变换的方法将负载电流中的正负序分量分离出来,利用其余从逆变器可用容量来补偿负载电流中的全部负序分量,而主逆变器仅提供负载电流中的基波分量,并维持逆变器输出端电压稳定.所提控制策略将电能质量治理功能嵌入到从逆变器控制策略中,有效降低了输出端电压的不平衡度.最后,基于PSCAD仿真对本文所提控制算法的有效性进行了验证.  相似文献   

9.
豆童童  邱楠  孔德贺 《电工技术》2022,(20):175-178
三相逆变器在较重的不平衡负载影响下输出的电压波形会畸变.基于三相四桥臂逆变器给出了解决这一问题的控制策略.使用90°对称分量法对各序电压进行分解,分解后的正序与负序分量使用双闭环 PI方法进行控制,零序分量则采用虚拟构造αβ坐标系进行控制,最后用三维空间电压矢量调制算法 (3D-SVPWM)产生控制脉冲驱动四桥臂逆变器.仿真结果证实了控制策略的有效性,三相四桥臂逆变器在带三相不平衡负载的情况下输出也是均衡的.  相似文献   

10.
低压微电网多逆变器并联下的电压不平衡补偿方法   总被引:1,自引:0,他引:1  
随着微电网规模的扩大,负载接入不对称日趋严重,导致微电网电压出现不平衡。为此,提出了--坐标系下的低压微电网多逆变器并联电压不平衡补偿方法。该方法包括不平衡补偿环、下垂控制环及电压电流环3个部分。在传统功率下垂控制基础上,通过检测三相负序电压和电流,引入功率下垂控制基础上,通过检测三相负序电压和电流,引入负序无功电导不平衡下垂控制环,合成并修正指令电流参考值。电压电流控制环采用准比例谐振(proportional-resonant,PR)控制实现电压的无静差控制,采用无差拍控制实现内环电流的精准控制。仿真和实验结果表明了所提的控制方法的有效性。  相似文献   

11.
唐忠  舒小婷  王磊 《电测与仪表》2019,56(12):123-128
由于单相负载、三相负载和非线性负载的混用,以及负载分布的不均衡,使得微电网三相电压不平衡问题比较突出。针对该问题,提出依据三相电压不平衡度调整逆变器各相输出功率的自适应控制策略。首先,建立了并网逆变器补偿控制原理框图,采用比例谐振(QR)控制器对电流进行无静差跟踪。然后,搭建了单相电压偏低和两相电压偏低的不平衡状态数学模型,依据四桥臂三相逆变器的三相电压具有可解耦独立控制的特性,将对三相电压的控制转变为对单相电压的控制,同时提出了改变并网断路器和相间断路器的开关状态,从而改变逆变器各相之间连接状态的控制方法,并且设计了补偿控制系数。最后利用MATLAB/Simulink进行仿真验证,仿真结果表明所提出的补偿控制可使三相不平衡电压得到有效补偿。  相似文献   

12.
针对并网型交直流混合微电网交流侧电压不平衡时会产生交流电流负序分量导致直流母线电压二倍频脉动的问题,提出了一种直流侧母线电压分数阶滑模控制以及交流侧负序电流抑制方法。首先,基于同步旋转坐标系下电网电压不平衡时交直流混合微电网互联接口变换器的数学模型,设计电压外环变结构滑模控制器。然后,根据电压不平衡时互联接口变换器的功率传输特性,提取交流侧三相电压的正序分量,得到交流侧负序电流抑制指令。接着,采用分数阶滑模趋近律设计内环电流解耦控制器,并利用李雅普诺夫函数进行稳定性校验。最后,基于Matlab/Simulink搭建的交直流混合微电网模型,验证了所提控制策略相较传统PI控制不仅抑制了三相电流的不平衡,而且将响应速度提升了近50%。  相似文献   

13.
舒小婷  唐忠 《电测与仪表》2019,56(21):57-62
针对微电网公共连接点(PCC)三相电压不平衡的问题,本文提出一种在公共连接点接入统一潮流控制器(unified power flow controller,UPFC),通过向输电线路中注入负序电压来治理微电网PCC三相不平衡电压的控制策略。首先,分析了UPFC的工作原理。其次,提出了功率解耦控制方法,建立了UPFC在正、负序同步旋转坐标系下的换流器控制模型,分别设计了串、并联侧换流器的控制策略,实现输电线路中有功功率和无功功率的独立控制,同时,在微电网三相不平衡情况下,获得输电线路中的负序电压并进行补偿。最后,在MATLAB/Simulink中建立了仿真模型,对提出的补偿控制策略进行了仿真分析。仿真结果证明:所提出的补偿控制能有效地治理输电线路的三相不平衡,实现微电网PCC的三相电压平衡。  相似文献   

14.
不平衡工况下,三相四桥臂逆变器并联系统不仅可以输出平衡的三相电压波形,而且还可以拓展系统的容量。与传统的三桥臂逆变器并联系统相比,三相四桥臂逆变器并联系统需要对正序、负序和零序电流进行控制,因此三相四桥臂逆变器的并联控制系统更为复杂。该文对三相四桥臂逆变器并联运行时,各序电流的分配进行了分析。为了使逆变器输出的正序、负序和零序电流能够按并联逆变器的容量分配,提出了正序电流使用下垂控制、负序电流与第四桥臂电流使用虚拟阻抗法分别控制正序、负序和零序电流的分配,并且对三相四桥臂逆变器的前三桥臂与第四桥臂分别进行控制,最终在不平衡工况下使并联三相四桥臂逆变器系统输出电压平衡且输出电流和输出功率按并联逆变器的容量分配,减小系统的环流。仿真和实验验证了该方法的有效性。  相似文献   

15.
适用于不平衡负载工况下的微网逆变器控制策略   总被引:1,自引:1,他引:0  
微网逆变器的一个重要性能是其工作在离网模式下时,在三相负载不平衡情况下仍能维持三相输出电压的对称性,为微网提供稳定的电压支撑。文中通过分析逆变器输出接不平衡负载时的系统不平衡机理,提出了一种简单有效的系统控制策略:在系统传统控制环路中引入谐振控制器,以抑制不平衡负载条件下控制环路中所存在的2倍工频脉动分量。所提出的控制策略免去常规控制中所需电压/电流正负序分离等控制环节,极大地简化了系统的控制结构。建立了新控制策略下的系统环路模型,给出了环路控制参数及谐振控制器的设计方法。仿真和实验结果验证了所提出的系统控制策略能有效抑制由不平衡负载引起的输出电压畸变,获得高质量的输出电压波形。  相似文献   

16.
在电网电压不平衡条件下基于虚拟同步发电机(VSG)控制策略的逆变器输出三相电流不平衡并且电流幅值过大。针对此问题,提出一种基于电网电压前馈的VSG平衡电流控制策略。利用VSG电流内环的控制框图推导出前馈控制器的传递函数,再将电网电压经前馈控制器前馈至电流内环,减轻故障电压对电流波形的干扰,降低电流畸变率。将瞬时有功、无功功率的平均值反馈到VSG算法得到抑制负序电流的电压参考指令,在电网电压故障期间使并网电流依然保持三相平衡而且幅值稳定。最后通过MATLAB/Simulink仿真证明了所提控制策略的有效性。  相似文献   

17.
针对虚拟同步发电机(VSG)在电网电压不平衡条件下逆变器输出电流存在严重畸变和有功、无功功率存在振荡等问题,利用比例积分降阶谐振(PI-ROR)控制器对传统不平衡电压下VSG控制策略进行改进。PI-ROR控制器不需进行电流、电压正负序分离计算就可实现对负序分量的无差控制,因而可将正序、负序电流放到同一dq轴上进行统一控制,与传统的正负序分别控制相比,不仅降低了电流环控制结构的复杂程度还避免了大量正负分离计算带来的控制延时。通过仿真证明PI-ROR控制器与恒有功、恒无功及电流平衡3种控制目标结合,可改善VSG在不平衡电压条件下的稳态、暂态性能。  相似文献   

18.
随着微电网规模的日益扩大,单相、三相负载混用日益增多,微电网单相电压不平衡现象日益严重。为了解决这个问题,针对三相四桥臂逆变器三相输出可解耦独立控制的特点,提出并网逆变器三相输出可控互联、各相输出功率根据电压不平衡度进行自适应调节的控制方案。在建立其平均等效模型及不平衡状态转移模型的基础上,对逆变器三相输出电流进行分级控制,实现对微电网不平衡电压的补偿。利用MATLAB/Simulink进行了仿真,并构建实验平台进行了实验。仿真和实验结果表明,所提出的补偿方法具有很好的补偿效果。  相似文献   

19.
设计了一种三相四桥臂虚拟同步发电机多环路控制策略,通过有功和无功的解耦控制使逆变器模拟同步发电机的一次调频、一次调压、惯性和励磁特性,并改进了控制方法,在功率环之后级联电压电流双环,改善微电网动态调节性能。针对平滑并网,利用一种预同步控制策略,使逆变器的频率相位和幅值追踪电网电压。同时,针对带不平衡负载时的电压不平衡、频率波动问题,提出了一种变频率自适应谐振控制方法。仿真与实验验证了所提控制方法的可行性。  相似文献   

20.
电网电压不平衡时,同步逆变器并网运行输出负序电流导致三相并网电流严重不平衡,进而使电网不稳定加剧,制约了其在新能源并网中的应用。针对此问题,对电网电压与逆变器输出电压未能同步而产生的不平衡电流进行机理分析,提出了一种抑制负序电流的新方法。该方法首先对逆变器输出电流进行态势预测,提前预知电流态势信息,然后将预测所得电流变化量转化为相应电压变化量作为前馈信息输入同步控制系统进行实时补偿,可实现同步逆变器态势利导下的快速预防控制。仿真结果表明,所提方法有效抑制了电网电压不平衡时的负序电流,降低了电流不平衡度,并提高了控制系统的动态性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号