首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Because of the improved performance of power devices, the volume of the ac filter inductors used in high‐frequency PWM inverters has been reduced. However, the temperature rise in the filter inductor due to this miniaturization has become more pronounced. Therefore, we have proposed an iron loss calculation method for the ac filter inductor. However, the accuracy of the value calculated via the loss map method cannot be verified, because the iron loss arising during each switching period cannot be measured with conventional power measuring instruments. In order to resolve this problem, we developed an inductor loss analyzer (ILA), which allows precise measurement of the iron loss in the inductor during each switching period. The accuracy of the calculation of iron loss in the filter inductor by the loss map method was verified with the ILA. We found that the value calculated by the loss map method differed slightly from the value measured with the ILA. However, these differences can be reduced if we take into account the accurate flux density calculation and the effect of the duty ratio of PWM pulses on the loss. Finally, we verified that the loss map method can provide accurate iron loss calculations.  相似文献   

2.
The inductor losses in a three‐phase ac filter inductor used in a three‐phase pulse‐width modulation (PWM) inverter are evaluated. First, a three‐phase inductor is designed to obtain the same value of inductance for each phase. Then, based on the design, a three‐phase inductor that uses two magnetic materials is proposed. The conversion efficiency of a 1 kVA three‐phase PWM inverter that uses the conventional and proposed ac filter inductors is simulated. Simulation results show that conversion efficiency improves. Finally, the conversion efficiency of an actual three‐phase 1 kVA PWM inverter that uses the conventional and proposed ac filter inductors is measured. In the experiment, the conversion efficiency obtained for the case of the proposed inductor improves by approximately 1% at low power load as compared to the conventional inductor. Furthermore, the calculated inductor losses are in good agreement with measured losses. Improvement in efficiency is verified trough simulations and experiments.  相似文献   

3.
The control of switched power converters has been mostly accomplished using pulse width modulation (PWM). Under this type of control, it has been shown in literature that DC–AC current mode single‐phase inverter may exhibit chaotic behavior if the proportional controller of the PWM modulator is badly tuned. In this work, we present a novel method to control the inverter using an optimal control approach. Our method consists in defining the switching instances in order to achieve the reference current with minimum error. To illustrate the efficiency of our proposed method, numerical simulations and comparison with the proportional and integral controller as well as to the proportional and resonant controller are presented. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
The purpose of this paper is to improve the efficiency of the single‐phase pulse width modulation (PWM) dc–ac inverter based on optimization of the switching phase of the PWM. Improvement of the efficiency means improvement of the quality of the output waveform and the conversion efficiency, and reduction of the switching loss. We propose an evaluation method involving minimization of the evaluation function by using the particle swarm optimization algorithm. We improve efficiency by setting a criterion for each index. As a result, the proposed algorithm can reduce high harmonic components in switching times shorter than the conventional triangle wave comparison method. Also, we confirm that the algorithm can improve the quality of the output waveform and the efficiency of conversion.  相似文献   

5.
This paper deals with an inverter system integrating a small‐rated passive EMI filter with a three‐phase voltage‐source PWM inverter. The purpose of the EMI filter is to eliminate both common‐mode and normal‐mode voltages from the output voltage of the inverter. The motivation of this research is based on the well‐known fact that the higher the carrier or switching frequency, the smaller and the more effective the EMI filter. An experimental system consisting of a 5‐kVA inverter, a 3.7‐kW induction motor, and a specially designed passive EMI filter was constructed to verify the viability and effectiveness of the EMI filter. As a result, it is shown experimentally that both three‐phase line‐to‐line and line‐to‐neutral output voltages look purely sinusoidal as if the inverter system were an ideal variable‐voltage, variable‐frequency power supply when viewed from the motor terminals. This results in complete solution of serious issues related to common‐mode and normal‐mode voltages produced by the inverter. © 2003 Wiley Periodicals, Inc. Electr Eng Jpn, 145(4): 88–96, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.10206  相似文献   

6.
High‐power utility interactive inverters used for large‐capacity energy storage systems are composed of multiple connected inverters, in order to realize high efficiency and high performance of the harmonic elimination characteristic simultaneously. Some disadvantages of multiple connected inverters, such as harmonic current flowing from an inverter unit to the other one, and increase of the number of inverter units, cannot be overcome easily. This paper presents a novel strategy for a high‐power utility interactive inverter, which is composed of a large power with low‐switching‐frequency PWM inverter (high‐power PWM inverter), an LC passive filter, and a series active filter (series AF). Because harmonic components contained in the utility line current are absorbed by the series AF, the switching frequency of the PWM inverter can be selected to about 1 kHz. In addition because the power capacity and the output voltage of the series AF can be suppressed lower than 10% of the power capacity and the output voltage of PWM inverter, low‐voltage and high‐speed power devices can be applied to the series AF. Consequently, high power, high efficiency, and high harmonics elimination performance can be realized without increasing the number of inverter units. © 2002 Wiley Periodicals, Inc. Electr Eng Jpn, 141(2): 57–66, 2002; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.10048  相似文献   

7.
This paper presents a characteristics comparison of a high‐frequency multilevel inverter connected with small‐ capacity filter inverters. In general, PWM inverters require a low‐pass filter in order to reduce switching harmonics. However, in the high‐frequency systems such as class D power amplifiers, the cutoff frequency of the low‐pass filter must be set at high frequency. Thus, harmonic distortion of the output voltage is enlarged to a harmful level. Increasing the number of output voltage levels is effective in reducing the harmonic distortion of the output voltage and the low‐pass filter size. The proposed systems consist of a five‐level inverter and several cascade‐connected low‐voltage full bridge inverters without any external DC power sources for filtering the output voltage. The five‐level inverter generates a stepwise waveform with five‐level voltage, and the low‐voltage filter inverter superimposes harmonic components to compensate for the voltage waveform distortion. Therefore, the proposed system can reduce its total switching loss and can increase the number of the output voltage levels. In this paper, the effectiveness of the proposed systems is verified through several experiments. © 2007 Wiley Periodicals, Inc. Electr Eng Jpn, 161(3): 58–65, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20373  相似文献   

8.
In this paper, a single‐phase quasi‐Z‐source (qZS) inverter (qZSI), integrating the pulse width modulation (PWM) control with interleaved‐and‐shifted shoot‐through state (STS) placement modulation technique, is proposed to simultaneously achieve both dc voltage boost and dc‐ac inversion. Instead of placing the STS in both inverter legs simultaneously, the addressed method inserts the STS only in left/right inverter leg separately during the positive/negative half cycle of the output voltage to reduce switching losses and thermal stresses of the power devices. The STS shift is also studied to decrease the switching numbers of power devices and thus can improve the efficiency further. Theoretical analysis and design guidelines of the studied inverter are included. Improvement in effectiveness and performance of the devised scheme and modulation strategy are proved experimentally and compared with the previous studies on a built laboratory prototype.  相似文献   

9.
石殿郑  张聪 《电测与仪表》2019,56(17):139-146
多脉冲逆变器通过移相变压器原副边移相角度的精确设计,可以在工频开关方式下,实现交流侧阶梯波输出,经过滤波得到高质量的正弦波形,但工频开关方式使其输出调压困难,而且随着脉冲数的提高,逆变器连接的变压器结构复杂,多个绕组之间的匝比难以兼顾,因此实际应用中多脉冲逆变器的通道数多在4以下。提出一种只有两个规格移相变压器结构的模块化48脉冲大功率PWM逆变器,该逆变器具有8个通道的三相逆变器和对应移相变压器组成,且每个三相逆变器采用低频PWM调制策略,实现输出电压调节。构建了一台8通道48脉冲的PWM逆变器样机,在各种运行状态下的输出波形以及相关测试数据验证了所提出的模块化多脉冲逆变器在输出波形、开关频率以及输出调节特性等方面的优势。  相似文献   

10.
This paper presents a novel pulse width modulation (PWM) technique with switching‐loss reduction for a five‐leg inverter (FLI). The PWM technique, in which the available maximum voltage for two motors adds up to DC bus voltage, has been proposed as the strategy for the FLI. Therefore, the DC bus voltage is fully available as the PWM strategy. However, the conventional PWM technique requires the frequency, phase, and amplitude of the phase voltage commands of a motor to produce zero‐sequence voltages (ZSVs). The novel PWM strategy has some efficient features. These features are discussed in this paper. The validity of the novel PWM technique will be shown by experimental results. © 2011 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

11.
软开关技术三相PWM逆变器及效率的分析研究   总被引:4,自引:4,他引:4  
首先对一种软开关技术三相PWM逆变器电路的工作原理及实验验证结果进行了介绍和分析。然后用对比的方法对文中讨论的软开关逆变器电路的功率损耗及工作效率进行了详细的数学描述 ,给出了开关器件及由其构成的逆变器功率损耗的简化数学模型。最后在一个驱动三相电动机的逆变器实际电路中对相关的数学分析结论进行了实验验证 ,实验结果完全验证了文章中的理论分析结果  相似文献   

12.
This paper proposes a new circuit topology of the three‐phase soft‐switching PWM inverter and PFC converter using IGBT power modules, which has the improved active auxiliary switch and edge resonant bridge leg‐commutation‐link soft‐switching snubber circuit with pulse current regenerative feedback loop as compared with the typical auxiliary resonant pole snubber discussed previously. This three‐phase soft‐switching PWM double converter is more suitable and acceptable for a large‐capacity uninterruptible power supply, PFC converter, utility‐interactive bidirectional converter, and so forth. In this paper, the soft‐switching operation and optimum circuit design of the novel type active auxiliary edge resonant bridge leg commutation link snubber treated here are described for high‐power applications. Both the main active power switches and the auxiliary active power switches achieve soft switching under the principles of ZVS or ZCS in this three‐phase inverter switching. This three‐phase soft‐switching commutation scheme can effectively minimize the switching surge‐related electromagnetic noise and the switching power losses of the power semiconductor devices; IGBTs and modules used here. This three‐phase inverter and rectifier coupled double converter system does not need any sensing circuit and its peripheral logic control circuits to detect the voltage or the current and does not require any unwanted chemical electrolytic capacitor to make the neutral point of the DC power supply voltage source. The performances of this power conditioner are proved on the basis of the experimental and simulation results. Because the power semiconductor switches (IGBT module packages) have a trade‐off relation in the switching fall time and tail current interval characteristics as well as the conductive saturation voltage characteristics, this three‐phase soft‐switching PWM double converter can improve actual efficiency in the output power ranges with a trench gate controlled MOS power semiconductor device which is much improved regarding low saturation voltage. The effectiveness of this is verified from a practical point of view. © 2006 Wiley Periodicals, Inc. Electr Eng Jpn, 155(4): 64–76, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20207  相似文献   

13.
The output power requirement of battery charging circuits can vary in a wide range, hence making the use of conventional phase shift full bridge DC‐DC converters infeasible because of poor light load efficiency. In this paper, a new ZVS‐ZCS phase shift full bridge topology with secondary‐side active control has been presented for battery charging applications. The proposed circuit uses 2 extra switches in series with the secondary‐side rectifier diodes, operating with phase shift PWM. With the assistance of transformer's magnetizing inductance, the proposed converter maintains zero voltage switching (ZVS) of the primary‐side switches over the entire load range. The secondary‐side switches regulate the output voltage/current and perform zero current switching (ZCS) independent of the amount of load current. The proposed converter exhibits a significantly better light load efficiency as compared with the conventional phase shift full bridge DC‐DC converter. The performance of the proposed converter has been analyzed on a 1‐kW hardware prototype, and experimental results have been included.  相似文献   

14.
三相二电平逆变器广泛应用于交流电机驱动、电能变换等领域。由于逆变器的输出电流含有纹波成分,会给系统带来损耗增加、性能下降等问题。在脉冲位置居中对称的前提下推导了电流纹波模型,分析了脉冲宽度调制技术(PWM)中开关周期、脉冲占空比和脉冲位置对电流纹波的影响,并提出了一种改变脉冲占空比抑制电流纹波的PWM方法,即变零矢量分配脉冲宽度调制技术(VZDPWM)。最后,通过仿真和实验验证了VZDPWM抑制电流纹波的有效性。  相似文献   

15.
This paper proposes a new control method for a high‐frequency cycloconverter consisting of two half‐bridge inverters and a series–resonant circuit. This cycloconverter acts as an ac‐to‐ac direct power conversion circuit without any dc stage. This circuit does not require a diode bridge rectifier, and thus, can be used to reduce forward voltage drops and power losses in the diodes. A new phase‐shift control method is proposed to regulate the capacitor voltage in each half‐bridge inverter and to achieve zero‐voltage switching. The proposed phase‐shift control is theoretically discussed and is also verified by an experimental circuit consisting of superjunction power MOSFETs. As a result, the proposed high‐frequency cycloconverter exhibits a good power conversion efficiency as high as 97.7% at the rated power of 1.3 kW.  相似文献   

16.
This paper proposes a new power decoupling method for a high‐frequency cycloconverter which converts the single‐phase line‐frequency ac input to the high‐frequency ac output directly. The cycloconverter consists of two half‐bridge inverters, two input filter capacitors, and a series‐resonant circuit. The proposed power decoupling method stores the input power ripple at double the line frequency in the filter capacitors. Therefore, the proposed method achieves a unity power factor in ac input and a constant current amplitude in the high‐frequency output without any additional switching device or energy storage element. This paper theoretically discusses the principle and operating performance of the proposed power decoupling method, and the viability is confirmed by using an experimental isolated ac‐to‐dc converter based on the high‐frequency cycloconverter. As a result, the proposed power decoupling method effectively improved the displacement power factor in the line current to more than 0.99 and reduced the output voltage ripple to 4% without any electrolytic capacitor.  相似文献   

17.
Zero-switching-loss inverters for high-power applications   总被引:1,自引:0,他引:1  
The development of zero switching loss inverters has attracted much interest for industrial applications. Two topologies for realizing zero switching losses in high-power converters are proposed. The actively clamped resonant DC link inverter uses the concept of a lossless active clamp to restrict voltage stresses to only 1.3-1.5 supply voltage. For applications demanding substantially better spectral performance, the resonant pole inverter (RPI), also called the quasi-resonant current mode inverter, is proposed as a viable topology. Using only six devices rated at supply voltage, this circuit transfers the resonant components to the AC side of each phase and thus requires additional inductor and capacitor (LC) components. On the other hand, the RPI is capable of true pulsewidth modulation (PWM) operation at high frequency as opposed to discrete pulse modulation operation found in resonant DC link invertors  相似文献   

18.
一种三相软开关逆变器的特性分析与仿真研究   总被引:1,自引:0,他引:1  
阐述了一种基于交流谐振环节的三相PWM逆变器零电压转换(ZVT)拓扑电路的工作特性及其控制方法,在该ZVT软开关拓扑电路的基础上,深入研究了逆变器的换向过程,重点讨论了辅助谐振电路的工作特性及谐振电感换流过程,并针对辅助谐振电感反向恢复问题,提出了采用基于谐振电感电流反馈的谐振周期控制算法,仿真结果验证了理论研究的正确性,实现了所有功率开关器件的软开关动作而无反向恢复现象。  相似文献   

19.
基于下垂锁相的逆变器并网控制策略研究   总被引:1,自引:0,他引:1  
采用电网电压前馈的并网逆变器,其滤波电感的感值、电流控制器的参数会影响逆变器并网功率因数.在电网电压前馈电流型并网控制策略的基础上,提出基于下垂特性的新型锁相环(phase-locked loop,PLL)控制方法,采用电网电压和并网电流相位差为反馈量调节锁相环的输出,可以实现并网逆变器单位功率因数运行,并且可以实现逆变器的反孤岛运行.给出该方法的控制框图,分析工作原理和锁相环下垂系数的选取方法,仿真和实验结果验证了该方法在改善逆变器并网功率因数和反孤岛能力方面的正确性和有效性.  相似文献   

20.
This paper proposes a fault-tolerant switched capacitor (SC)–based boost multilevel inverter. The proposed inverter is able to convert a low-level dc voltage into a desired ac output voltage in single-stage power conversion. It can accomplish a high voltage gain by using multiple SC cells arrangement at reduced voltage stresses on the switching devices and passive circuit elements in the boost network. The principle of operation and steady-state analysis of the proposed topology are presented to formulate the mathematical relationship between input dc and output ac voltage. In addition to that, the proposed inverter can also provide reliable electrical power supply at prescribed ac output voltage in the event of open-circuit failure of power switches. The fault tolerability is realized by reconfiguring the pulse width modulation (PWM) control scheme, whereas the reduction in output voltage is compensated by the boosting characteristic of the inverter. The effectiveness of the proposed inverter has been compared with other impedance source multilevel inverters in terms of voltage gain, boosting capability, and voltage stresses. A laboratory prototype of the proposed inverter is developed for experimentation, and its operation is validated by simulation and experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号