首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
电网对称故障下基于active crowbar双馈发电机控制   总被引:21,自引:0,他引:21  
随着风力发电规模和风电机组单机容量不断增大,要求大型风电机组具有低电压穿越能力,因此需要研究三相对称故障下双馈风力发电机控制方法.在电网电压突然跌落时,由于双馈发电机中的电磁耦合关系,在定转子中感应出过电压过电流,为保护转子侧变换器,需要通过crowbar来短路双馈发电机的转子.针对传统的passive crowbar的不足,采用active crowbar电路的控制方法.当电网故障造成双馈发电机转子过流时,开启active crowbar电路来旁路转子侧变换器.当转子电流下降到一定程度时断开crowbar,转子侧变换器恢复工作,此时双馈电机可以向电网同时提供有功无功支持.理论分析的基础上进行了仿真研究.仿真结果证实了采用active crowbar可以有效地实现双馈风力发电机的低电压穿越.  相似文献   

2.
针对双馈风电机低电压穿越过程中存在的问题,在分析电压跌落时风机直流侧电压模型的基础上,提出了超级电容器经隔离型全桥DC/DC变换器并联在风机直流母线处.通过超级电容储能系统吸收电网低电压故障时在直流侧产生的不平衡功率,以此抑制直流母线过电压.为了满足电网低电压故障期间的无功需求,机侧变流器采用无功优先控制;网侧变流器则采用电压功率协调控制方法,两侧共同向电网输送无功.在故障切除后,将超级电容释放的功率引入到网侧变流器控制中作为前馈量,平衡超级电容的电能.最后仿真结果表明了该控制方案在电网发生故障时能有效抑制直流侧过电压,向电网提供无功功率帮助电网电压恢复;在故障切除后能够加快输出有功恢复,有效提升了双馈风电机组可靠性和经济性.  相似文献   

3.
针对电网电压跌落时投入现有被动式转子Crowbar保护,只能实现对双馈风电机组的系统保护,而无法实现低电压穿越的不足,提出故障时在定子中串接由电感组成的新型Crowbar。首先从理论上对双馈发电机电压跌落极限下激起的电磁过渡过程进行分析计算,揭示影响电磁过渡过程的本质规律。在此基础上,给出双馈发电机在电压跌落极限下新型Crowbar电感值整定方法及励磁控制策略。理论分析和仿真结果表明,新型Crowbar与控制策略相结合即使在电压跌落极限下,也能够对双馈发电机转子侧变流器提供保护,并向电网提供无功支撑,实现电压跌落极限下低电压穿越。  相似文献   

4.
随着风电机组容量的逐年增大,为减少大规模风电接入系统对电网的影响,对风电提出了新要求,即风电机组具有一定的低电压穿越能力。介绍了变速恒频双馈风电机组的基本结构,建立了双馈风电机组动态数学模型。以Matlab/Simulink为仿真平台搭建了系统仿真模型,结合风电场低电压穿越能力要求的规定,针对不同电网电压跌落的情况下,仿真研究了变速恒频风电机组的低电压穿越能力,结果表明:双馈风电机组在电网电压跌落时满足继续并网运行的条件,且为电网电压恢复提供了无功,提供的无功功率大小与电网电压跌落程度有关。  相似文献   

5.
针对双馈异步风力发电系统,提出应用基于滑模变结构控制策略的STATCOM,提高风电机组低电压穿越能力.研究STATCOM的工作原理,以及滑模变结构控制策略的特点,建立了含STATCOM的双馈风电机组模型.仿真结果显示,应用基于滑模变结构控制策略的STATCOM,在电网电压跌落时,有效抑制了直流母线电压过压,转子电流激增,无功功率大幅振荡的现象,改善了并网电能质量,提高了风电机组低电压穿越能力.  相似文献   

6.
双馈风电机组低电压穿越特性的试验研究   总被引:4,自引:1,他引:3  
低电压穿越能力正逐渐成为大型并网风电机组的必备功能之一,要求风电机组在电网电压跌落发生时保持并网,故障消除后快速恢复正常运行。在分析双馈机组电压跌落特性的基础上,采用了转子主动式Crowbar电路和直流侧卸荷电路相结合的方法来实现双馈风电机组的低电压穿越功能,讨论了具体的低电压穿越控制策略,通过仿真验证了电路结构和控制策略的正确性。在实验室10 kW双馈机组实验平台上,采用电压跌落发生器模拟电网电压跌落故障,进行了电网电压跌落至额定电压20%时不同持续时间的测试,证实了所采用的低电压穿越控制策略的有效性。  相似文献   

7.
在深入分析双馈风力机组数学模型的基础上,通过对现有低电压穿越方案的控制策略和效果的研究,提出了基于动态刹车电阻(DBR)的交直流复用Crowbar低电压穿越方案。所述方案有2种工作方式:当电网电压轻度跌落时,运行于直流Crowbar工作方式;当电网电压深度跌落时,运行于交直流复用Crowbar方式。针对2MW双馈风力发电机组进行了试验,对设计方案进行了验证。研究表明,所述方案对电网电压轻度跌落持续可控;对电网电压深度跌落,利用并联整流桥取代机侧变频器输送转子故障能量至直流母线,规避了跌落瞬间机侧变频器容量不足的缺点,至机侧变频器重启并联整流桥退出,恢复背靠背变频连接。对不同程度电网电压跌落,所述方案均能实现低电压穿越,故障期间无功支撑满足电网导则要求。  相似文献   

8.
电网电压跌落引起双馈感应风电机组(double fed induction generator,DFIG)定子电压跌落,造成DFIG定子磁链振荡,从而引起定、转子产生较大的振荡电流,特别是对双脉冲宽度调制(pulse width modulation,PWM)变换器产生极大的危害。若不采取有效的低电压穿越(low voltage ride through,LVRT)控制措施,将会导致DFIG从电网解列,危及电力系统安全运行。提出一种直流侧的低电压穿越技术,通过在DFIG背靠背变流器直流母线电容上加装超级电容储能系统,利用其功率密度大、充电时间短、使用寿命长、温度特性好等特点,来进行短时大功率充放电,在电网电压跌落、直流侧电压波动期间,将能量储存在超级电容中,同时也可以释放多余的能量补偿直流侧电压,从而有效地提升DFIG低电压故障的耐受能力,实现DFIG的低电压穿越。建立了3 MW风力发电机仿真模型,根据相应的计算原则确定配置7.65 F的超级电容器,当电压跌落50%且故障时间一直持续,超级电容可以控制机组维持稳定运行15 s,验证了超级电容提高风电机组低电压穿越能力的有效性。  相似文献   

9.
低电压穿越能力是双馈风电机组(DFIG)最重要的性能指标之一。网压跌落时,应用Crowbar电路使得转子变流器闭锁,转子电流处于暂态过程。针对采用Crowbar电路限制DFIG转子侧过电流和直流侧过电压存在的不足,论文提出一种基于转子电流源控制且电流指令一阶导数恒定的低压穿越强励直流灭磁控制策略,并给出灭磁电流归零的约束条件及转子暂态电流可控的必要条件,实现低压跌落过程及电压恢复过程电机直流磁链分量的强制衰减和灭磁过程后转子交流励磁电流的快速控制,显著降低了机组在低压穿越过程的无功消纳。仿真及实验结果验证了理论分析的正确性,为双馈风电系统的低压穿越提供了一种有效的控制方案。  相似文献   

10.
为增强电网故障下双馈风力发电系统(DFIG)的低电压穿越(LVRT)运行能力,提出一种DFIG转子侧变换器(RSC)强励控制策略。在基于定子磁链定向的矢量控制策略中增加多频比例谐振控制器(MFPR),当电网故障造成发电机定子电压跌落时,多频比例谐振控制器能够对转子侧变换器(RSC)的输出励磁电压进行补偿,抑制转子故障电流,实现DFIG的低电压穿越运行。分析了转子电压等级与DFIG的低电压穿越运行区间的关系,为DFIG转子侧变换器的电压等级设计标准提供了参考依据。控制系统结构简单,保证了系统的响应速度,可同时对电网对称跌落和不对称跌落产生的故障电流进行抑制。通过对1.5 MW双馈风力发电机组进行仿真研究,验证了理论分析的正确性和所提控制策略的可行性。  相似文献   

11.
低电压穿越要求风力发电系统在电网电压突降下保持连续运行并为电网提供无功功率支撑。为提升双馈风力发电系统的低电压穿越能力,提出基于状态相关Riccati方程技术的干扰抑制控制方法。所提干扰抑制控制目标为:确保转子侧换流器在暂态期间为系统提供所需的无功功率支撑;控制网侧换流器以维持直流母线电压恒定。基于上述控制目标构建相应的干扰抑制控制问题,并采用状态相关Riccati方程技术获得反馈控制律。在设计权重矩阵时,充分考虑了控制目标、控制效果与控制成本的影响。为了保证转子电流和直流母线电压在低电压穿越过程中处于安全范围,设计转子电流抑制机制,并采用串联动态电阻保护电路。最后,与传统比例-积分(PI)控制、基于粒子群优化的PI控制、滑模控制以及精确线性化控制的仿真结果进行对比,结果表明所提出的控制策略具有更好的暂态性能,能够有效地提升双馈风力发电系统的低电压穿越能力。  相似文献   

12.
直流母线并接直流卸荷电路(Chopper)以保护转子侧变频器(RSC)是一种较常用的双馈风电机组低电压穿越改造方案。目前对称故障下双馈风电机组短路电流特性研究以故障后投入撬棒(Crowbar)电阻为主,Chopper动作下双馈风电机组短路电流特性研究几乎没有,故而难以分析其作用下双馈风电机组短路电流特性对系统中保护动作可靠性和设备安全的影响。类比双馈风电机组故障后投入Crowbar电阻的分析思路——转子回路串入电阻,通过分析对称故障后Chopper动作下的转子电流回路,将被闭锁的RSC和Chopper等效为可变电阻,分析了该等效电阻阻值随电压跌落程度和故障前转差率的变化规律。根据故障后双馈感应发电机的磁链、电压关系,通过数学解析得到Chopper动作下对称短路电流解析表达式。在MATLAB/Simulink中搭建配置Chopper的双馈风电机组模型,仿真验证了该表达式的有效性。  相似文献   

13.
提高直驱永磁风机低电压穿越能力的功率协调控制方法   总被引:1,自引:0,他引:1  
在分析直驱永磁同步风力发电机低电压穿越问题产生机理的基础上,提出了一种适用于直驱风机的新型功率协调控制方法。该方法综合使用改进的双侧变流器和桨距角控制手段,低压暂态时,利用变流器直流母线电容充电储能配合风机转子变速储能承担风机产生的不平衡能量,减弱机组机械轴系所受的冲击作用;使用变桨系统减少风机捕获的风能,减轻机组低电压穿越的负担;通过网侧变流器向电网提供动态无功功率,减小网侧电压的跌落幅度;同时在双侧变流器的控制器中增加协调限流控制环节,用以保证风机有功无功控制目标的有效实现。文中所述方法不附加任何硬件,充分使用直驱风机自身可用的控制手段,能够有效提高直驱风机在全风域范围内的低电压穿越能力。最后,使用DIgSILENT/Power Factory搭建仿真实例,验证了所述方法的实用性和有效性。  相似文献   

14.
为提升双馈风力发电系统的低电压穿越(LVRT)能力,提出一种基于状态相关Riccati方程(SDRE)技术的网侧换流器(GSC)跟踪控制方法。并网导则要求风电场在LVRT过程中须注入一定无功功率支撑电压恢复,为了改进非线性状态调节器在无功支撑能力上的不足,针对双馈风力发电系统的GSC设计非线性无功功率跟踪控制器,并采用SDRE技术求解状态反馈控制律。在维持LVRT过程中直流电压稳定的基础上,该方法能充分利用GSC的无功功率调节能力,为电网提供无功功率支撑以避免电压恶化。最后,在Matlab/Simulink平台搭建9 MW双馈风力发电系统,并在三相接地故障下进行仿真验证,结果显示,所提出的GSC控制方法具有良好的暂态表现,能够有效提高双馈风力发电系统的LVRT能力。  相似文献   

15.
针对Boost升压型永磁直驱型风电系统,分析了其发电机侧和网侧变流器的控制策略.为增强其低电压穿越能力,提出了一种基于转子储能和网侧无功优先输出的控制策略.通过减小发电机的有功输出来降低直流侧过电压,通过控制网侧无功输出来提升电网电压.基于Matlab/Simulink 7.10搭建了仿真模型.仿真结果证明了该控制策略的有效性.  相似文献   

16.
当电网电压跌落时,风电机组须维持一定时间与电网连接而不解列,并且能提供无功以支持电网电压的恢复,即具有低电压穿越能力,而双馈风电机组低电压穿越能力最弱。分析建立了双馈风力发电机组的模型,通过使用MATLAB/SIMULINK仿真,来研究它的LVRT性能,及影响它LVRT性能的因素,探讨它的改进方案。  相似文献   

17.
双馈感应发电机(DFIG)具有有功、无功功率独立调节能力及励磁变频器所需容量小等优点,在风力发电系统中得到越来越广泛的应用。但正是励磁变频器的过流能力限制使得其对电网故障非常敏感,电网故障下DFIG风电机组的控制能力受到限制。当前国外大多数风电并网标准都要求风力发电机在电网电压跌落的情况下不能从电网中解列,以便在故障后电网恢复过程中提供功率支持,避免发生后续更为严重的电网故障,这即是对风电机组低电压穿越能力的要求。为了保护变流器和对电网提供支撑,需要研制一种能够在电网故障发生时为故障电流进行旁路的设备———Crowbar电路。针对Crowbar的电流旁路装置进行了研究,说明Crowbar电路具有抑制转子浪涌电流和保护直流母线的作用,并在小功率平台上进行了试验,证明了这种设备对于提高DFIG系统的LVRT能力具有重要的作用。  相似文献   

18.
基于Crowbar的双馈风力发电低电压穿越研究   总被引:2,自引:0,他引:2  
随着风力发电机容量和风电规模的增加,要求双馈感应发电机(DFIG)能够实现低电压穿越(LVRT)能力。在电网电压跌落的对称故障下,针对原有LVRT技术的不足,提出一种采用主动式Crowbar电路的控制策略。在电压跌落后,转子电流突升时,触发Crowbar电路,旁路转子侧变换器;在电流恢复到一定程度时,断开Crowbar电路,使转子侧变换器投入工作。通过有、无Crowbar电路仿真对比表明,该方法可较好地控制转子过电流、母线过电压及电磁转矩的振荡,同时在故障期间向系统输送无功,达到LVRT的要求。  相似文献   

19.
改善基于双馈感应发电机的并网风电场暂态电压稳定性研究   总被引:14,自引:8,他引:14  
提出了改善基于双馈感应发电机的并网风电场暂态电压稳定性的措施以实现风电场的低电压穿越(low voltage ride through, LVRT)功能。目前,大部分基于双馈感应发电机的变速风电机组不具有故障情况下的暂态电压支持能力,当电网侧发生严重短路故障时,风电场的暂态电压稳定能力会影响到电网安全稳定。该文在DIgSILENT/PowerFactory中建立了具有暂态电压支持能力的变速风电机组转子侧变频器控制模型及用于故障后稳定控制的桨距角控制模型,通过包含风电场的电力系统仿真计算验证了模型的有效性及其对风电机组和电网暂态电压稳定性的贡献。仿真结果表明,当电网侧发生三相短路故障时,风电机组转子侧变频器暂态电压控制能够控制风电机组发出无功功率支持电网电压;桨距角控制能有效降低变速风电机组机械转矩,避免出现风电机组超速及电压失稳。得出结论:采用变频器暂态电压控制及桨距角控制能够改善基于双馈感应发电机的并网风电场的暂态电压稳定性,确保风电机组低电压穿越(LVRT)功能的实现及电网安全稳定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号