首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
混合储能系统在风光互补微电网中的应用   总被引:1,自引:0,他引:1  
光伏发电和风力发电输出功率具有间歇性和随机性的特点,为了提升微电源的性能,将储能装置应用于风光互补的微电网中。采用超级电容与蓄电池的混合储能系统,通过对DC/DC变换器控制策略的合理设计,实现了蓄电池恒流充放电,延长了使用寿命;针对传统PID控制的不足,采用响应速度更快、控制效果更好的滑模变结构控制方法;为了平抑风光互补微电网并网功率,并在孤岛运行时提供稳定的电压频率支持,采用低压微电网的下垂控制策略。在孤岛运行时,分别在风速、光照强度改变以及负载变化的情况进行了仿真评估混合储能系统的性能,结果表明,混合储能系统能够提高风光互补微电网的电能质量。  相似文献   

2.
针对风光互补发电系统并网功率波动问题,在考虑平抑功率波动对储能性能需求的基础上,将蓄电池和超级电容器组成复合储能系统(hybrid energy storage system,HESS)应用到风光互补微电网中,并提出了复合储能的能量管理和控制策略。能量管理方面,遵循超级电容器优先工作原则,通过判断超级电容器端电压大小来决定复合储能的工作方式;超级电容器用来平抑风光发电并网波动功率的高频部分,蓄电池平抑低频部分,进而减少蓄电池的充放电次数,延长其使用寿命;控制策略方面,蓄电池的双向DC/DC变换器采用恒功率控制,超级电容器的双向DC/DC变换器采用恒母线电压控制,保证了直流母线电压的稳定,实现了复合储能的双向充放电控制。最后,利用PSCAD软件搭建了含复合储能的风光互补微电网仿真模型,仿真结果验证了所提控制策略的有效性和正确性。  相似文献   

3.
针对能量型储能系统和功率型储能系统互补控制技术,本文研究了应用于微电网中混合储能系统的有功功率分级分配方法与平抑风电功率波动的混合储能协调优化控制方法,利用蓄电池平抑风光输出功率的低频波动分量,利用超级电容平抑风光输出功率的高频波动分量,混合储能系统大大提高了风光并网后的稳定性与可控性。结合微电网架构模型以及风光等发电单元的数据,控制策略应用于浙江某海岛微电网示范工程改善了电能质量,增加了微网经济效益。  相似文献   

4.
介绍一种应用在风光互补发电系统中的双向DC/DC变换器.该双向DC/DC变换器除了具有对蓄电池充放电实现有效控制,延长蓄电池的使用寿命等特点外,该双向DC/DC变换器的最大优点是提高风光互补发电系统的运行效率,以及对能量的智能管理.双向DC/DC变换器承担系统的能量传递工作,因此有效并合理地控制双向变换器是实现该系统诸多优点的核心.在实验室通过一实验样机验证了其正确性和合理性.  相似文献   

5.
超级电容器与蓄电池混合储能系统在微网中的应用   总被引:16,自引:3,他引:13  
由于微网中含有发电单元输出功率与负荷功率2组不相关随机变量,储能需要频繁吸收(发出)有功功率以维持微网的稳定运行,这对传统蓄电池储能的工作状况产生了较大的负面影响,缩短了其使用寿命.文中提出了适用于微网的超级电容器与蓄电池混合储能结构,采用统一建模方法进行了建模,并采用小信号分析方法推导了储能的稳定条件.针对该混合储能结构,采用多滞环调节控制策略提高了储能的灵活性与实用性.利用超级电容器功率密度高和循环寿命长的优点,通过控制双向DC/DC变换器实现对蓄电池充放电过程的优化控制,可以避免蓄电池单独储能时的容量浪费,延长其使用寿命,提高储能的技术经济性.仿真和实验结果验证了所提出的混合储能结构及其控制策略的有效性.  相似文献   

6.
以蓄电池与超级电容器混合储能系统为研究对象,提出基于频率滞环的孤立微网混合储能系统频率控制策略。该控制策略包含Ⅰ、Ⅱ两种控制方式:控制方式Ⅰ通过引入频率滞环来协调频率控制精度与蓄电池充放电次数的关系,可有效减小蓄电池的充放电次数;控制方式Ⅱ综合考虑蓄电池使用寿命和超级电容器容量的双重约束,通过频率滞环协调蓄电池和超级电容器的充放电优先级,实现不同储能装置的优化控制。在DIg SI-LENT商业软件中搭建了Benchmark低压微网算例,仿真结果验证了所提控制策略的有效性。  相似文献   

7.
风光互补发电蓄电池超级电容器混合储能研究   总被引:13,自引:0,他引:13  
提出一种风光互补发电中的超级电容器与蓄电池混合储能系统,充分利用蓄电池能量密度大和超级电容器功率密度大、循环寿命长的优点,大大提升了储能系统的性能。建立了混合储能系统的模型和控制环节,并进行实验,结果表明,在发电功率和负载功率脉动时,蓄电池能够工作在优化的充放电状态,有效减少了充放电循环次数,延长了使用寿命,提高了系统的工作效率。该系统对解决新能源发电系统中储能问题,具有十分重要意义。  相似文献   

8.
本文利用蓄电池和超级电容具有的互补性,将蓄电池和超级电容混合储能应用于并网型的风光互补发电系统中,使风光互补发电系统满足电网的调度和规划要求。以系统成本最小为优化目标函数的HOMER仿真软件运算,对风光蓄发电系统容量进行初级优化。结合初级优化得出的蓄电池容量,利用遗传算法对蓄电池和超级电容混合储能系统进一步优化,从而获得最优系统容量优化配置。结合实例验证仿真和算法的合理性和可行性。  相似文献   

9.
针对混合电动汽车在城市交通中频繁加速减速的特点,设计了基于超级电容储能的电动汽车辅助储能系统,选择两相交错式半桥拓扑双向DC/DC变换器作为超级电容的充放电电路.重点设计双向DC/DC变换器对超级电容的充放电控制,采用平均电流控制的两个电感电流内环和一个电压外环的控制策略,并对电动汽车辅助储能系统进行了Simulink仿真,从而有效验证了超级电容在电动汽车中应用的优势.  相似文献   

10.
系统分析了太阳能LED路灯用蓄电池的不足以及应用超级电容器的优势,提出了基于超级电容器与蓄电池构成的有源式混合储能系统.指出将高功率密度的超级电容器与高能量密度的蓄电池通过高效率双向DC/DC变换器匹配,既可以实现短时大电流能量的高效收集,又可以实现小电流的高效收集,避免蓄电池受到大电流的冲击,使系统在阴雨天仍然能够将...  相似文献   

11.
锂电池作为光储微网的储能电池,能够提高光伏发电系统的稳定性,改善电能质量,但成本高昂。将电动汽车的退役动力锂电池用于光储微网的储能单元,不仅可以降低投资成本,还可以缓解大批量电池进入回收阶段的压力。首先基于锂电池的工作原理,构建了退役动力锂电池的等效电路模型。接着建立了储能变流器和多重双向DC/DC变换器级联拓扑,储能变流器采用电压外环、电流内环的双闭环策略,稳定直流母线的电压;多重双向DC/DC变换器采用以电池组的荷电状态(SOC)为约束条件的双闭环控制策略,平抑光伏发电系统的功率波动。最后搭建了基于退役锂电池储能的光储微网系统,验证了控制策略的有效性。  相似文献   

12.
钻井直流微电网冲击功率的混合储能平衡技术   总被引:1,自引:0,他引:1  
受限于钻井直流微电网的功率动态调节缓慢,冲击性负载对钻井直流微电网电能质量造成严重影响。为了解决直流微电网冲击功率供需均衡问题,提出以混合储能环节为核心的补偿方法。基于超级电容和蓄电池储能的互补特性,在传统混合储能控制策略的基础上,提出一种纳入蓄电池参考电流约束和电流动态分配的混合储能控制策略。在保证蓄电池电流限制值不被超越的前提下,实现冲击功率在混合储能单元内的优化分配,从而既能够延长蓄电池生命周期,又显著缩短了混合储能系统冲击功率补偿的动态响应时间,解决了钻井直流微电网电压波动的问题。仿真与实验验证了所提控制策略的有效性与可行性。  相似文献   

13.
随着直流负荷的增多,传统的交流微电网已经不能满足系统负载多样性及经济性等方面的需求,交直流混合微电网逐步成为研究热点和难点。仿真研究中,分布式发电(Distributed Generation,DG)的随机性、时变性和非线性化特性,使得混合微电网中DG的建模和算法实现比较困难,DG与储能之间的协调控制亦是一个难题。为此,基于实际工程需求搭建了一种包含直流大电网的交直流混合微电网的系统结构,提出了相应元件的物理模型与控制策略,并在仿真平台下着重模拟了各微元在不同工况下的协同运行。仿真结果表明,所提出的交直流混合微电网结构合理,各元件的控制策略和性能良好,且整个系统具有较快的响应速度,很好地满足了系统安全稳定性要求。  相似文献   

14.
冯骁  张建成 《中国电力》2016,49(3):154-159
为了更充分地利用分布式电源的发电出力,最大限度发挥超级电容器的技术经济性,提出了两端供电的干线式直流微网结构,指出超级电容器储能系统在直流微网的优势与作用,并根据超级电容器储能系统配置地点来选择控制方法,电源端配置采用电压分段控制,负荷端配置采用恒压控制。在Matlab/Simulink平台上搭建包含超级电容器储能系统的直流微网模型,分析超级电容器储能系统配置位置对直流微网电能质量的影响。仿真结果表明超级电容器储能系统能有效地抑制负荷波动或光照变化引起的电压大幅变化。  相似文献   

15.
储能系统是微电网的重要组成部分,而保证储能系统的荷电状态(SOC)良好则是储能系统乃至整个微网安全高效运行的技术关键。文中提出了一种基于虚拟同步机(VSG)控制的交直流混合微网接口变流器与储能SOC协同控制策略,用以提高混合微网的频率、功率稳定性和系统内各储能SOC的分配合理性。首先对交直流微网两侧分布式电源的下垂控制方式及子网特性进行了分析,之后基于此特性提出了应用于接口变流器的VSG控制策略提高了系统频率功率稳定性,并且在功率分配环节中加入储能系统SOC控制策略,使各子网间储能SOC状态达到平衡,优化储能系统状态。最后利用Matlab/Simulink搭建了交直流混合微网模型对文中提出的算法进行了有效性验证。  相似文献   

16.
独立直流微网能量管理控制策略   总被引:1,自引:1,他引:0       下载免费PDF全文
在直流微网控制系统中,维持母线电压稳定以及能量的合理分配对系统可靠运行具有重要的指导意义。针对基于光伏发电的独立直流微网系统,提出一种新的能量管理控制策略,根据光伏DC/DC变换器在不同光照条件下的控制策略,利用蓄电池储能单元作为支撑,通过蓄电池充放电时不同的能量管理控制策略,维持母线电压稳定,为直流负载提供电能,其核心是使光伏电池与蓄电池储能单元协调工作,确保直流微网的高效稳定运行,最后通过实验结果验证了所提出控制策略的正确有效性。  相似文献   

17.
针对直流微电网中微电源功率输出不稳定以及负荷波动导致直流母线电压偏移问题,提出一种含超级电容和蓄电池的混合储能系统充放电控制策略。该控制策略将储能系统分为5种工作模式,控制系统根据直流母线电压值选择混合储能系统的工作模式,实现蓄电池与超级电容在充电、放电及空闲模式间自由切换,从而维持直流母线电压稳定。通过Matlab/Simulink软件搭建系统模型,仿真结果表明,采用该控制策略可使直流母线电压保持在电压偏移允许范围内。  相似文献   

18.
为使直流微电网具备一定的故障穿越能力,考虑增强系统对直流母线电压的调节能力,提出了基于电池储能的故障穿越方案。引入基于非线性扰动观测的前馈项,设计了基于储能单元改进下垂控制的直流微电网故障穿越控制策略。这种控制策略可以有效抑制直流母线电压波动,缩短电压调节时间,使直流母线电压保持在安全运行范围内,从而实现直流微电网在直流支路短路故障下的故障穿越。最后在Simulink中搭建有高渗透率光伏发电的直流微电网仿真模型,对所提出的方案和所设计的故障穿越控制策略进行验证。  相似文献   

19.
微电网中的微电源和负载具有波动性和随机性,故储能系统是维持微电网安全可靠运行并改善电能质量的关键,蓄电池与超级电容器混合使用可以发挥蓄电池电池能量密度大和超级电容器功率密度大,充放电速度快的优势,提高微电网储能系统性能。提出了一种基于互补PWM小信号模型,并分别给蓄电池和超级电容器设计了控制方案,蓄电池采用单电流环很好的平抑了功率的低频波动,超级电容器采用带前馈的双环控制,平抑功率的高频波动,并有效的维持了直流母线电压的稳定。仿真结果证明了所提出的控制策略的正确性。  相似文献   

20.
为了减少功率损耗和确保独立交直流混合微电网稳定运行,设计一种新的基于混合储能动态调节的分布式协调控制策略。通过检测直流电压和交流电压频率,该策略对连接交直流微电网的双向AC/DC变流器输出功率进行动态调节。混合储能中采用下垂控制自动调节蓄电池的输出功率,同时超级电容器迅速提供负荷功率的高频分量,以减小负载突变对蓄电池和母线电压造成的冲击。此外,在逆变器的下垂控制器中引入电压前馈补偿量来减小交流负荷的电压波动。最后,利用Matlab/Simulink搭建了混合微电网仿真模型。仿真结果表明,在不同工况下,该分布式控制策略均能控制混合微电网稳定运行及电压稳定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号