首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
混合级联型多落点直流输电系统整流侧为换相换流器(LCC),逆变侧为LCC和模块化多电平换流器(MMC)组串联的拓扑结构,可以有效抑制换相失败,具备大容量功率传输的优势。建立了单极混合级联型多落点直流输电系统,针对系统中LCC送受端交流故障引发的直流功率降低、逆变侧换相失败以及受端低端MMC子系统产生的功率反向问题进行了研究,提出了一种提升系统稳定性的协调控制策略。该策略通过改变逆变侧直流电压来维持交流系统故障后功率传输的稳定性,可防止受端MMC功率反送。PSCAD/EMTDC仿真结果验证了所提协调控制策略的有效性。  相似文献   

2.
±1100 kV特高压直流输电工程受端将采用分层接入方式,高、低端换流器分别接入500 kV和1000 kV层级电网。为解决常规控制策略无法独立控制逆变侧换流器输送功率的问题,提出了改进附加功率协调控制策略,通过在直流系统两侧加入附加控制器,实现对两侧传输功率更加灵活的控制。同时,为保证对功率进行紧急提升时,将功率提升指令合理分配给同级串联高、低端换流器,定义了功率分配系数,提出功率分配策略,实现对逆变侧各换流器提升功率的协调控制。通过仿真验证了改进附加功率协调控制策略在系统正常运行、受端功率指令下降、交流母线电压上升等工况下,能够实现对逆变侧换流器输送功率的灵活控制。功率分配策略在功率紧急提升时,能够将同极提升的直流功率在串联换流器中进行合理分配,有利于充分利用各换流器的功率输送能力,保证各换流器熄弧角留有较大的裕度,减少换流器发生换相失败的概率。  相似文献   

3.
±1100 kV特高压直流输电工程受端将采用分层接入方式,高、低端换流器分别接入500 kV和1000 kV层级电网。为解决常规控制策略无法独立控制逆变侧换流器输送功率的问题,提出了改进附加功率协调控制策略,通过在直流系统两侧加入附加控制器,实现对两侧传输功率更加灵活的控制。同时,为保证对功率进行紧急提升时,将功率提升指令合理分配给同级串联高、低端换流器,定义了功率分配系数,提出功率分配策略,实现对逆变侧各换流器提升功率的协调控制。通过仿真验证了改进附加功率协调控制策略在系统正常运行、受端功率指令下降、交流母线电压上升等工况下,能够实现对逆变侧换流器输送功率的灵活控制。功率分配策略在功率紧急提升时,能够将同极提升的直流功率在串联换流器中进行合理分配,有利于充分利用各换流器的功率输送能力,保证各换流器熄弧角留有较大的裕度,减少换流器发生换相失败的概率。  相似文献   

4.
逆变侧采用电网换相换流器(LCC)和模块化多电平换流器(MMC)串联组成的特高压混合级联多端直流输电系统,为特高压直流输电提供了一种更为经济、灵活、快捷的输电方式。基于现有直流电网的协调控制策略,文中对受端MMC阀组之间的协调控制策略进行了深入的分析研究,并考虑了5种协调控制策略。然后,在PSCAD/EMTDC中,对上述5种策略遭受不同故障的响应特性分别进行仿真,故障包括送端交流故障、直流线路故障、受端LCC交流故障、受端MMC1交流故障及MMC1紧急闭锁退出。最后,基于仿真结果,对上述5种协调控制策略的适用性进行了对比分析。仿真结果表明:策略1和策略3遭受各种故障均能有效穿越;策略2、策略4和策略5在遭受直流线路故障时均发生不同程度的功率倒转,需要采取措施抑制。  相似文献   

5.
将常规两端直流输电系统逆变站的电网换相换流器(LCC) 替换为模块化多电平换流器(MMC)所构成的混合直流输电系统,可结合两种换流器的优点而具有广阔的应用前景。在研究其基本稳态控制特性的基础上,重点分析了交流电网不对称故障引起的直流输送功率下降及中断问题。通过分析混合直流系统的交流故障特征,发现交流不对称故障发生在整流侧时易引起直流电压下降甚至输送功率的中断,发生在逆变侧时易引起直流系统电压异常。鉴于此,提出了基于MMC典型控制的附加直流电压控制策略,在其调制范围内通过降低故障时逆变侧的参考直流电压以提高直流系统的输送能力。若检测到本站直流电压的交流分量大小超过限定值,则附加控制策略自动投入,无需依靠换流站间的通信。最后,通过PSCAD/EMTDC电磁暂态仿真验证了所提控制策略的可行性。  相似文献   

6.
整流侧采用电网换相型换流器(line commutated converter,LCC),逆变侧采用模块化多电平换流器(modular multilevel converter,MMC)的混合型直流输电系统,结合LCC和MMC的优点,尤其适用于特高压直流输电应用场合。为了确保正常状态和故障状态下的稳定运行,文中针对混合型直流输电系统的控制策略进行研究。文中首先针对一个LCC整流站,两个MMC逆变站构成的三端混合直流系统,介绍了数学模型和整个直流系统的基本控制策略。然后针对基本控制策略下,逆变站中串联MMC存在的电压不均问题、整流侧交流系统故障时整流侧功率中断问题和逆变侧交流系统故障时的直流过电压问题,研究了用于改善系统响应特性的附加控制策略。最后在PSCAD/EMTDC中搭建了对应的三端混合直流系统。通过比较采用附加控制策略前后混合直流系统的响应特性,验证了附加控制策略的有效性。  相似文献   

7.
针对整流站采用电网换相型换流器(LCC)、逆变站采用并联两端模块化多电平换流器(MMC)的三端混合直流输电系统,重点研究了整流站交流侧故障导致直流输送功率减小或中断的问题,并提出了一种整流站交流故障穿越协调控制策略。首先,建立了混合直流系统中不同类型换流器的数学模型并分析了其交流故障特征;其次,针对不同的系统运行方式及故障时直流电压降低、直流侧含有二倍频分量的故障特征,提出了整流站最小触发角控制与逆变站最大调制比控制的站间协调策略;再次,通过改进原有100 Hz保护定值,实现了控制模式可自主切换;最后,在PSCAD/EM TDC中建立了混合直流输电系统的模型,对该系统在不同工况下的控制特性进行了仿真分析。结果表明:所提控制策略在整流站交流故障情况下可相应提高直流系统的输送功率,降低整流侧发生交流短路故障时引起功率输送中断的概率。  相似文献   

8.
±1100kV直流系统分层接入方式下的功率协调控制   总被引:1,自引:0,他引:1  
结合±1 100kV特高压直流分层接入方式下受端连接多个交流系统的特点,建立了逆变侧各换流器的附加功率—电压控制,通过独立控制各换流器触发角实现对其输送功率的独立调节。同时,为了减少在紧急功率控制过程中各换流器发生换相失败的可能,提出最优功率比的概念,将整流侧阶梯式功率提升指令按最优功率比进行预估,并分配给逆变侧各换流器的附加功率—电压控制,实现对逆变侧各换流器提升功率的协调控制。基于PSCAD仿真平台,采用±1 100kV特高压直流系统逆变侧分层接入500kV/1 000kV交流系统的仿真系统进行验证。结果表明,附加功率—电压控制器能够实现对换流器输送功率的独立控制,有利于发挥分层接入方式下潮流分布可控的优势。功率协调控制策略在紧急功率控制时能够将直流功率合理分配给各换流器,有利于充分利用各换流器输送功率的能力,并减小换流器发生换相失败的可能。  相似文献   

9.
为了减少海上风电经采用电压源换流器的直流输电系统送出的系统的造价,提出的基于双馈风机的海上风电经混合直流输电送出的拓扑结构是:风电场侧换流器为电压源换流器,逆变侧换流器为电网换相换流器(LCC)。为保证系统在正常状态下稳定运行并能够对风速变化进行功率追踪,风电场侧换流站采取定交流电压和给定频率的控制,逆变侧采取定直流电压控制。同时,针对电网为弱系统时易发生连续换相失败故障,提出在LCC的控制系统中加入定关断角控制作为故障备用控制,并在定关断角控制启动时在风电场侧整流站加入定直流电压控制来抑制换相失败。在PSCAD仿真软件中模拟海上风电利用混合直流送出电能,仿真结果验证了混合直流输电系统能够跟踪风电场输出的功率变化,在交流侧故障时协调控制策略的转换能够减少换相失败的次数,保证系统恢复正常运行。  相似文献   

10.
提出了一种适用于远距离大容量架空线路的基于电网换相换流器和模块化多电平换流器(line commutated converter-modular multilevel converter,LCC-MMC)的串联混合型直流输电系统。该系统能够灵活控制有功功率和无功功率,且能够依靠LCC和MMC的协同控制应对交直流故障。首先提出了稳态下系统的控制方式;进一步地提出了交流故障下系统的控制策略,以使整流侧交流故障下系统不发生断流和逆变侧交流故障下系统仍能保持一定的功率输送能力;基于闭锁状态下MMC的输出电压特性分析,提出了直流故障下系统的控制策略。通过时域仿真验证了所述交直流故障下控制策略的有效性。  相似文献   

11.
文章中的串联混合型直流输电系统的整流侧采用电网换相换流器(line commutated converter,LCC),逆变侧采用LCC与全桥型模块化多电平换流器(full bridge submodule based modular multilevel converter,FBMMC)。首先,建立了该混合型直流输电系统的数学模型,为了保证系统的安全稳定启动,设计了相应的协同控制策略,并提出了一种适用于整流侧采用LCC与逆变侧采用LCC与FBMMC(line commutated converter-full bridge submodule based modular multilevel converter,LCC-LCC+FBM M C)的串联混合型直流输电系统的3阶段启动策略:第1阶段,先将整流和逆变侧的LCC闭锁,逆变侧的FBMMC带限流电阻进行不控充电以建立部分直流电压;第2阶段,将限流电阻旁路,并解锁逆变侧FBMMC,在定直流电压控制器作用下使FBMMC直流电压充电至额定值;第3阶段,解锁两侧的LCC,在整流侧定直流电流和逆变侧定直流电压控制器作用下,系统直流电流和直流电压逐渐上升至额定值,至此启动过程完成。最后,在PSCAD/EMTDC仿真环境下建立LCC-LCC+FBMMC串联型混合直流输电系统的仿真模型,验证了所设计的混合直流输电系统启动策略的有效性。  相似文献   

12.
针对大规模风电外送可靠性问题,提出风火打捆经混合三端直流输电并网系统拓扑结构并设计各换流器的控制策略。混合三端直流输电系统的发电端由两个自然换相(LCC)整流器组成,受端由一个电压源型逆变器(VSC)与外电网相连。风电场群侧LCC1换流器采用定有功功率的控制策略,可以追踪最大功率;火电厂侧LCC2换流器采用定直流电流控制策略,可以平抑风功率波动。受端换流站控制器VSC采用定直流电压和定无功功率控制策略,能有效应对换流站侧交流系统短路故障和负荷突变等工况。仿真结果表明所提控制方案的有效性。这种输电模式能够综合利用常规直流输电和轻型直流输电各自的优点,有效扩展常规风火打捆直流输电系统的适用范围。  相似文献   

13.
为了研究验证基于电网换相换流器-电压源换流器(line commutated converter-voltage source converter,LCCVSC)多端混合直流输电系统的启停控制策略,搭建了完整双极的LCC-VSC三端混合直流输电动模平台,在LCC(整流)-VSC(逆变)、VSC(整流)-LCC(逆变)以及VSC(整流或逆变)接入常规LCC直流输电系统等混合直流输电运行模式下,对系统的启动和停止等关键控制策略以及一端投退对多端混合直流输电网络的影响进行了实验研究,并根据实验结果对混合直流系统的主要控制功能和特点进行了分析。实验结果表明所提出的控制策略能够实现混合直流输电系统的平稳启停和在线投退。  相似文献   

14.
受端混联型多端直流输电系统具有很好的工程应用前景,但受端不同换流站在交流故障时的耦合特性复杂,其控制策略应能适应各站交流故障穿越的需求。首先研究了受端混联系统逆变侧并联模块化多电平换流器(modular multilevel converter, MMC)侧交流故障时的电流不平衡、过压过流机理,以及电网换相换流器(line commutated converter, LCC)侧交流故障时的功率返送机理。然后,基于故障特性提出了一种简单的协调控制策略,即通过在MMC从站配置基于有功不平衡量的电压补偿来实现并联站间电流平衡,通过设计合适的LCC定电流整定控制来解决严重过压问题。最后基于白鹤滩—江苏多端直流输电工程实际参数的电磁暂态仿真结果,验证了对故障机理分析的正确性和所提控制策略的有效性。协调控制策略不仅能有效解决MMC功率和电流不平衡问题、减小过压过流和避免功率返送,还能改善系统恢复性能,提升系统安全稳定性。  相似文献   

15.
为解决传统电网换相高压直流输电与电压源换流器高压直流输电在直流电网中的混联问题,针对一种新型的混联直流输电系统进行了研究。该系统是整流侧采用模块化多电平换流器、逆变侧采用晶闸管换流器的四端双极混联直流电网。推导了该系统稳态时的数学模型,针对其逆变侧易发生换相失败的问题,设计了新的抑制换相失败的协调控制策略。在整流侧换流站中通过低压限压和低压限功率控制的配合,抑制逆变侧故障电流的增大,从而减小换相失败发生的概率。在PSCAD/EMTDC中对该混联直流电网的稳态和暂态特性进行了仿真分析,仿真结果证明了所提控制策略的有效性。  相似文献   

16.
Multilevel converters are now an attractive solution for high-voltage direct-current (HVDC) electrical energy transmission systems. Unlike the well-known two-level voltage source converters, multilevel converters use 3 or more voltage levels or steps per leg to modulate the ac voltages, decreasing voltage distortion and reducing electromagnetic interference. This work presents a HVDC transmission system based on a new multilevel structure using a dual two-level converter topology. This structure attains multilevel operation and advantages using two well known three-phase voltage source two-level inverters connected to one three-phase open windings transformer. The proposed dual converter structure has two independent dc links allowing each inverter to process half of the total power. This arrangement is fitted with a control system designed to control the active and reactive power towards their specific set point values, while balancing the voltages of the two dc link capacitors in real time. Obtained results show the effectiveness of the proposed HVDC transmission system.  相似文献   

17.
针对VSC-LCC型双端混合直流输电系统拓扑,结合其系统特殊性提出了一种基于极性切换的启动控制方案。建立了VSC-LCC型双端混合直流输电 系统拓扑及其数学模型;在VSC换流器整流侧采用直接电流控制方法,在LCC换流器端逆变侧采用定直流电压控制方法的基础上,针对该系统潮流单向 流动性的限制问题,在LCC换流器端直流侧采用极性切换的启动控制策略;在PSCAD/EMTDC环境下建立了该系统的模型,验证了设计的启动控制策略。 仿真结果表明,该启动控制策略能有效抑制启动过程中的过电流和过电压,保证系统平稳地过渡到额定运行状态,达到了良好的启动控制效果。  相似文献   

18.
电流源型混合直流输电系统建模与仿真   总被引:4,自引:1,他引:3  
为解决传统直流输电系统换相失败问题,针对电压源型混合直流输电系统存在直流故障难以处理、平波电抗与直流电容容易产生谐振、无法进行潮流反送等缺点,分析了一种新型电流源型混合直流输电系统,其特点是整流侧采用传统的电网换相换流器,逆变侧采用基于全控型器件的新型电流源型换流器。重点推导了电流源型换流器在dq旋转坐标系下的低频和稳态数学模型,并设计了相应的控制器和控制策略。在PSCAD/EMTDC中以葛南直流系统为基础搭建了电流源型混合直流系统。详细阐述了启动和潮流翻转的步骤和过程,测试了逆变侧发生三相短路故障下系统的响应和恢复特性,研究了系统的直流故障自清理能力和重启动策略。仿真结果表明,该系统具有良好的性能,是直流输电系统在远距离、大功率应用领域一种可行的改进方案。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号