首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
混合型模块化多电平换流器(MMC)在远距离大容量架空线输电领域具有十分广阔的应用前景。为定量研究混合型换流器的运行特性,文中提出了混合型MMC动态解析模型和稳态解析模型的建模方法。通过稳态解析模型求解与换流器内部电气量和控制量有关的非线性方程组,实现了在任意直流电压和功率运行点下换流器运行特性的完全解析求解。对比了不同直流电压水平下,电磁暂态模型仿真结果和稳态解析模型的计算结果,验证了稳态解析模型的精确性。研究了考虑多种运行约束条件时混合型MMC的功率运行区间计算方法,尤其考虑了半桥子模块的均压约束。计算了不同直流电压水平下的功率运行区间,分析了各约束条件以及子模块电容、桥臂电抗器、桥臂子模块比例等参数对功率运行区间的影响。  相似文献   

2.
模块化多电平换流器HVDC直流侧故障控制保护策略   总被引:11,自引:0,他引:11  
模块化多电平换流器(MMC)是电压源换流器(VSC)的一种新型拓扑。由于MMC与VSC拓扑结构的差异,二者的直流系统故障机制也有所区别,有必要对其故障特性进行深入分析以进行保护设计。文中介绍了MMC的拓扑结构及工作原理,通过比较基于MMC与VSC直流输电系统的故障特征差异,分析了MMC-HVDC不同类型直流线路故障对系...  相似文献   

3.
作为新一代直流输电技术,基于电压源换流器(VSC)的柔性直流输电(VSC-HVDC)发展前景广阔,特别是模块多电平换流器(MMC),将日趋成熟并广泛应用到输电领域。主要研究模块化多电平换流器系统的主电路参数设计、控制方法和仿真建模方法。在EMTDC/PSCAD平台上,搭建两端模块化多电平换流器直流输电(MMC-HVDC)的详细仿真模型,通过对模型在额定状态和功率波动状态下的运行结果进行分析,验证了仿真模型的有效性。  相似文献   

4.
模块化多电平换流器稳态运行特性的解析分析   总被引:2,自引:0,他引:2  
宋强  刘文华  李笑倩  李建国  罗雨 《电网技术》2012,36(11):198-204
为了实现模块化多电平换流器装置的主回路分析和参数设计,建立模块化多电平换流器稳态运行特性的准确解析分析方法十分必要。文章基于开关函数分析方法建立了子模块各电气量之间耦合关系,可以直接得到换流器的主要电气量解析表达式,计算过程相对比较简单。事先计算出二倍频环流分量的幅值和相位,并在后续计算过程中考虑二倍频环流的影响,使计算结果更为准确。通过将解析计算结果分别与仿真和物理试验结果进行对比,验证了所提方法的有效性和准确度。  相似文献   

5.
为保证模块化多电平换流器的正常运行(modular multilevel converter,MMC),必须预先对子模块中的储能电容器充电。在分析MMC拓扑及运行机理的基础上,针对单端MMC及其在高压直流输电(high voltage direct current,HVDC)领域的应用,提出了一种适合工程应用的两阶段预充电方案。仅利用自身交流系统,就可将电容电压快速提升至额定值。同时为避免充电过程中的过电流,对定直流电压控制进行了改进。通过MATLAB仿真,验证了所提方案的正确性。  相似文献   

6.
模块化多电平换流器(MMC)是目前比较主流的柔性直流输电换流器结构之一。柔性直流输电换流站损耗中换流器损耗占主要部分,详细分析换流器的损耗特性对于系统设计、冷却装置选型以及探求降损方法都有着重要意义。通过分析MMC各开关器件的工作特性,考虑结温、死区时间、驱动电阻等对换流器损耗的影响,提出了一种基于曲线拟合理论的MMC损耗计算方法,并编制了基于Matlab的损耗计算程序,最后通过算例对MMC损耗进行了定量分析,并对各因素对MMC损耗的影响特性进行了分析。  相似文献   

7.
模块化多电平换流器(MMC)采用模块化设计,通过调整子模块的串联个数可以实现电压及功率等级的灵活变化,其普遍子模块(半桥、全桥结构子模块)的输出为0、1两种电平。提出了一种新型模块化多电平换流器子模块拓扑结构并介绍了其工作原理。该种子模块可以输出0、1、2三种电平,与原有的半桥结构相比,在输出同样电平数的情况下,该新型拓扑可以节省25%的IGBT,减少了子模块的总数和换流站的占地面积。成功地将最近电平逼近调制(nearest level modulation,NLM)策略应用到新型拓扑上,并给出了相应的电容电压控制策略。在PSCAD仿真环境中搭建基于NLM的11电平两端MMC—HVDC输电系统,仿真结果表明子模块电容、直流电压和谐波均满足要求,验证了所提拓扑和控制策略的正确性与有效性。  相似文献   

8.
电压源型换流器通常在同步旋转dq坐标系中建立控制系统模型。在此控制系统中,锁相环用于跟踪电网电压频率和相位变化,其跟踪精度决定了控制系统的动稳态性能。本文摒弃以往在dq坐标系建立控制器的方法,提出一种新的无锁相环的模块化多电平换流器控制策略,其中外环采用PI调节器,内环在两相静止αβ坐标系中采用PCI调节器。该控制策略无需知道电感的参数,而且不需锁相环也能实现零稳态误差地跟踪参考给定值。  相似文献   

9.
模块化多电平换流器直流输电控制策略   总被引:1,自引:0,他引:1  
模块化多电平换流器高压直流输电(MMC-HVDC)系统的控制策略及电流内环控制器对其故障时的运行特性有着重要影响。设计了电网电压不平衡下负序电流抑制策略和对应的限流环节。为解决正负双序同步旋转坐标下电流序分量分解和控制器较多问题,构建了基于比例积分和谐振控制的混合电流矢量控制。此外为降低桥臂环流对系统运行的影响,在分析桥臂电流构成成分的基础上,针对环流序分量2倍频特点设计了桥臂环流抑制器。仿真结果表明混合电流矢量控制能够实现直流和2倍频交流电流信号的统一控制,达到了负序电流和桥臂环流的抑制效果。  相似文献   

10.
混合型模块化多电平换流器具备降压运行和不闭锁穿越直流故障的能力,子模块均压约束是其降压运行时对稳态功率运行范围起主要限制的运行约束。从满足子模块均压约束的换流器桥臂电流和桥臂电压的特性出发,分析了混合型模块化多电平换流器在降压运行时的功率极限运行范围。提出了快速确定混合型模块化多电平换流器可行功率运行域的计算方法。通过对比解析扫描计算的结果和电磁暂态仿真共同验证了计算方法的准确性和有效性。分析了全桥子模块比例对功率运行极限范围的影响。从功率运行能力的角度提出了全桥子模块最小比例的设计方法。  相似文献   

11.
双极MMC-HVDC系统直流故障特性研究   总被引:2,自引:0,他引:2  
直流故障是模块化多电平换流器高压直流输电(MMC-HVDC)的主要故障类型,目前国内外对于MMC-HVDC直流侧故障的研究主要集中于伪双极系统,而对于真双极系统直流侧故障的研究还处于起步阶段。首先,介绍真双极MMC的拓扑结构和工作原理,并根据实际交直流系统电气参数、桥臂子模块电容及电抗的放电机制,建立真、伪双极两种拓扑MMC-HVDC系统直流故障状态下的对应等效电路。然后,对比分析两种拓扑不同阶段故障电流在MMC桥臂上的流通路径,重点研究了故障短路电流对换流站桥臂阀组影响程度的差异,并指出三种电气参数与故障短路电流变化之间的内在关系。最后,基于RT-LAB仿真平台,搭建51电平双极MMCHVDC双端直流输电模型,仿真结果证明了直流故障特性研究方法的正确性。  相似文献   

12.
针对基于模块化多电平换流器的高压直流输电系统(modular multilevel converter based high voltage direct current, MMC-HVDC),研究了交流系统对MMC-HVDC稳态运行范围的影响并且揭示了限制直流功率输送能力的关键因素。首先,文章基于一个单端的MMC-HVDC系统,列写出完整的数学模型。其次,分别研究了交流系统短路比、换流变压器容量和换流站容量对换流站稳态运行范围的影响。最后,研究了并联无功补偿电容器对MMC-HVDC运行范围的影响。计算结果表明,当交流系统短路比较大时,MMC-HVDC的运行范围主要受到换流变压器容量的限制;当交流系统短路比较小时,MMC-HVDC的运行范围主要受到交流系统短路比的限制。此外,无功补偿电容能改善MMC-HVDC的运行范围。  相似文献   

13.
模块化多电平换流器型高压直流(MMC-HVDC)输电系统接入电网后将对交流系统短路电流产生影响,但目前交流保护整定计算通常忽略MMC-HVDC接入母线故障时模块化多电平换流器对短路电流的贡献。文中以交流保护整定计算为出发点,提出了MMC-HVDC系统简化分析原则。在分析MMC-HVDC系统控制特性的基础上,建立了适用于交流保护整定计算的MMC-HVDC等效模型,提出MMC-HVDC接入母线故障时可以将直流侧等效为一个正序电流源。研究了MMC-HVDC接入母线故障时不同故障点残压下MMC-HVDC直流侧响应特性,确定了等效电流源的幅值和相位,并进行了仿真验证。最后,提出了MMC-HVDC对交流保护整定计算影响的定量评估指标及其计算方法。  相似文献   

14.
基于模块化多电平换流器的高压直流输电(MMC-HVDC)具有高度的可控性,其故障电流特性与传统的同步电源差别较大,可能影响电流相位差动保护的动作性能。推导了故障线路换流站侧和电网侧电流相量的表达式,对故障电流特性进行了深入分析;在此基础上,推导得了到单相接地故障和相间短路故障条件下故障线路两侧电流相角差的解析表达式;分析了故障类型、电压不平衡度、功率参考值等因素对故障线路电流相角差的影响,进而指出MMC-HVDC对电流相位差动保护动作性能的影响机理。在PSCAD/EMTDC中搭建了仿真模型,仿真结果验证了理论分析的正确性。  相似文献   

15.
双极MMC-HVDC系统站内接地故障特性及保护策略   总被引:1,自引:0,他引:1  
针对双极柔性直流输电系统模块化多电平换流器(MMC)交直流出口接地故障,研究了换流器闭锁后的电压电流暂态特性,并推导了故障分量的数学解析式。研究结果表明,交流出口发生单相接地故障时,换流器闭锁后非故障相上、下桥臂分别出现了过电压和过电流现象,并且交流侧电流出现直流偏置导致故障相短路电流不存在过零点。直流出口发生单极接地故障,换流器闭锁后桥臂短路电流主要由交流系统注入的稳态电流和上下桥臂电抗间衰减的环流构成。针对交流出口发生单相接地故障这一特殊的故障特性,提出了一种选相跳闸保护策略,解决了故障电流不存在过零点时交流断路器无法正常断开的难题。最后搭建了张北四端环网结构柔性直流电网仿真模型,仿真结果验证了换流器出口故障特性分析的准确性以及所提选相跳闸保护策略的有效性和可行性。  相似文献   

16.
为了验证舟山多端柔性直流输电系统是否具备在线极隔离功能,从理论和实践两个方面进行了分析。基于模块化多电平换流器(MMC)的拓扑结构及其子模块结构,对MMC在线极隔离过程中的充放电可能性进行了分析,理论上证明了在线极隔离的可行性。为保证安全,现场极隔离试验分为带线路空载加压试验以及端对端试验两个过程。通过舟定换流站的现场试验,证明了舟山多端柔性直流输电系统具备了在线极隔离的功能,在此过程中不会出现危险的过压以及持续的燃弧现象,在线极隔离对现场设备无影响。  相似文献   

17.
由于交直流混联电网中的交流系统和直流系统之间存在有功功率耦合,因此基于模块化多电平换流器(MMC)的高压直流输电(HVDC)系统无法完全隔离故障时交直流侧之间的相互影响。文中提出将基于电池储能系统(BESS)的MMC应用于HVDC系统以实现交直流侧功率解耦控制的方法。首先分析了基于BESS的MMCHVDC系统的基本结构和工作原理。然后,基于数值积分和嵌套的快速仿真方法,推导了基于BESS的子模块和基于BESS的MMC换流器的戴维南等效电路。最后,搭建了±400 k V的两端MMC-HVDC系统对所提建模方法和系统的解耦效果进行了验证。结果表明,基于BESS的MMC-HVDC系统交流侧有功功率和直流侧功率可以彼此解耦,在交流或直流故障期间可以保持功率的正常输送。  相似文献   

18.
MMC-HVDC换流器阻抗频率特性分析   总被引:3,自引:0,他引:3  
分析模块化多电平换流器(modular multilevel converter,MMC)交直流侧呈现的阻抗频率特性是系统设计的重要内容。首先根据MMC的基本运行机理和连续模型,推导交直流侧阻抗的等效表达公式;然后提出基于测试信号法的阻抗计算方法和详细实现流程;最后利用PSCAD/EMTDC对典型系统进行仿真计算。结果表明:1)在电压源激励和电流源激励下所呈现的交流侧阻抗特性不同,而直流侧阻抗特性一致;2)交流侧阻抗特性难以利用无源元件简单串并联模拟,而直流侧阻抗可等效为单调谐滤波器;3)稳态运行点变化对交直流侧阻抗几乎没有影响;4)不同控制模式下交直流阻抗特性曲线基本趋势一致,主要在低频范围内略有不同。  相似文献   

19.
模块化多电平换流器(modular multilevel converter,MMC)能够实现无功功率的独立控制和快速调节,MMC柔直换流站可以作为一种厂站级调节资源,提升电力系统无功区域优化水平.为此,针对MMC柔直换流站无功调节能力展开研究.首先,基于典型单端MMC柔直换流站拓扑建立数学模型;其次,分析影响柔直换流...  相似文献   

20.
一种MMC-HVDC的直流电压波动抑制新方法   总被引:5,自引:0,他引:5  
针对柔性直流输电系统常规直流电压波动抑制算法中存在的缺陷,提出一种适用于模块化多电平换流器型高压直流输电系统(modular multilevel converter based high voltage direct current,MMC-HVDC)的直流电压波动抑制方法。该方法利用MMC特有的“储能”特性,在交流系统不对称时,控制 MMC 交、直流侧瞬时有功功率不再平衡,从而实现MMC交流侧电流依然保持对称运行,同时直流侧电压、电流和功率保持为恒定。为了实现上述控制功能与目标,建立三相交流系统不对称时 MMC 直流回路的模型,设计αβ0坐标系下以比例谐振调节器为基础的控制策略,且探讨MMC-HVDC中的协调控制问题。最后,搭建71电平背靠背 MMC-HVDC 系统模型进行数字仿真,结果验证了所提控制方法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号