首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 143 毫秒
1.
母线区外故障时,TA可能发生饱和,电流采样波形发生严重畸变,饱和的TA不能提供电流来平衡其他TA提供的电流而出现差动电流,微机母线保护装置有可能不正确判断故障位置。基于差电流在TA饱和时的特点提出了一种新型母线差动保护。该方案应用小波包对故障暂态分量差电流和故障暂态分量和电流进行变换,根据暂态信号中的几个特定频段的谱能量的平方和来实现区内、外故障的判定。大量的仿真结果表明,在不同故障时刻该方案能够正确地区分故障区间,提高了母差保护的灵敏度和可靠性,具有很强的实用价值。  相似文献   

2.
提出一种虚拟阻抗模型的电流互感器饱和判别方法,它可以有效地识别区内外故障因电流互感器(TA)饱和对差动保护的影响。在电力系统的线路、母线、主设备等一些差动保护中,区外故障时,在大的短路电流作用下TA饱和容易造成保护误动。基于RL模型的短数据窗算法可以测得保护安装点的二次等效系统阻抗,它可以等效到在系统故障增量模型中虚拟一条阻抗支路。区内外故障TA饱和时,该支路虚拟阻抗会发生明显的变化。分析该阻抗在TA饱和与否情况下的变化规律,利用这种变化规律可以可靠、灵敏地判别出区内外故障TA饱和,是否闭锁差动保护,提高差动保护的可靠性。  相似文献   

3.
结合一起3/2开关接线方式下,发生区外故障时由于电流互感器(TA)饱和导致差动保护误动作的案例,分析了3/2开关接线方式下TA饱和对比例电流差动保护的影响,得出了基于差动量和制动量比例制动特性的电流差动保护在区外故障出现TA饱和时动作概率会很大的结论。根据在TA线性传变区内差动电流和制动电流能够正确反映区内外故障的思想,提出了基于能量制动的抗TA饱和措施,并且针对3/2开关接线方式下的特殊电气结构,提出了在该接线方式下的一种新的制动能量表达方式,能够对由于区外故障导致的TA饱和进行可靠识别并闭锁差动保护。仿真分析表明,针对3/2接线方式下可能出现的TA饱和现象,提出的抗TA饱和措施能够显著提升电流差动保护的抗TA饱和性能。  相似文献   

4.
为解决变压器差动保护在发生区外故障CT饱和转区内同名相故障CT饱和导致的差动保护拒动问题,提出一种差流点差饱和开放识别方案。若为单电源CT饱和时饱和段差流采样点将会很小或出现间断。若为多电源单CT饱和时差流趋于正常波形。利用差流采样点的比率制动关系及制动电流间断角的特性,通过识别一周波内满足比率制动特性与间断点的总采样点数,来判断是否区内故障。仿真结果表明,该方法适用于变压器差动保护同名相转换性故障识别。  相似文献   

5.
基于电流极性比较的抗电流互感器饱和新方法   总被引:2,自引:1,他引:1  
提出了一种适用于输电线路差动保护抗电流互感器(TA)饱和的新方法———电流极性比较法。该方法通过将输电线路二次电流和差流相应的瞬时值相乘再积分的方法来比较两电流的极性关系,以此区分内部故障和外部故障时的TA饱和。EMTP仿真计算表明,在输电线路外部故障且TA发生饱和时,电流极性比较法能够可靠地闭锁差动保护;而在内部故障尤其是外部转内部故障且发生TA饱和时,也能使保护快速开放。  相似文献   

6.
采用数学形态学防止变压器差动保护误动的新方法   总被引:8,自引:5,他引:8  
为有效地防止变压器区外故障TA饱和引起的差动保护误动,该文提出了一种基于数学形态梯度实现TA饱和检测的新方法.与传统的“时差法”不同,该方法仅需要对故障发生时刻进行检测,不需要对差流出现时刻准确定位,通过对故障后的一小段差流波形进行适当变换,构造出新的电流波形,然后利用数学形态梯度进行处理,提取出电流波形特征,从而实现在TA严重饱和的情况下,对差动保护区内外故障的准确识别.新方法计算简单,快速可靠,EMTP仿真实验验证了该方法的可行性和有效性.  相似文献   

7.
基于虚拟制动电流采样点差动的CT饱和识别方法   总被引:1,自引:2,他引:1       下载免费PDF全文
分析了CT饱和产生的机理以及CT饱和后二次电流的本质特征,根据一次电流过零点附近CT二次电流存在线性传递区的特点,提出基于虚拟制动电流采样点差动的识别CT饱和方法。理论分析与动模试验结果表明,该方法能够很好地解决变压器区外故障时由于电流互感器饱和造成变压器比率差动保护误动的问题,进一步提高了差动保护的可靠性,具有实际应用的价值。  相似文献   

8.
一种基于异步法的母线保护中电流互感器饱和判据   总被引:6,自引:0,他引:6  
准确判别出电流互感器(CT)饱和是区外故障还是区内故障引起的可提高母线保护的可靠性。区内外故障CT 饱和前存在线性传变性,在有效的数据窗内(通常取半个周波的数据作为差动保护判据的有效数据),饱和点前后差流与制动电流的大小和相位变化不同步,即饱和时刻超前于差动保护动作时刻,差流和制动电流变化量不一致,利用这种不同步关系文章提出了一种新的CT饱和判据,通过仿真和动模实验证明了该判据的可靠性,它可以有效避免因区外故障CT深度饱和而引起差动保护误动。  相似文献   

9.
分析了CT饱和产生的机理以及CT饱和后二次电流的本质特征,根据一次电流过零点附近CT二次电流存在线性传递区的特点,提出基于虚拟制动电流采样点差动的识别CT饱和方法.理论分析与动模试验结果表明,该方法能够很好地解决变压器区外故障时由于电流互感器饱和造成变压器比率差动保护误动的问题,进一步提高了差动保护的可靠性,具有实际应用的价值.  相似文献   

10.
基于电流互感器线性传变区检测的母线采样值差动保护   总被引:1,自引:0,他引:1  
根据电流互感器(TA)饱和时每工频周期内线性传变区和饱和区存在周期性间隔重复,且线性传变区之间的间隔通常短于1/2工频周期的规律,提出基于TA线性传变区检测的母线采样值差动保护新方法:首先利用采用值差动原理确定线性传变区的位置,如果在差流1/2周期里没有出现线性区,则开放保护,否则说明TA发生饱和,闭锁保护1/2周期。在后续的工频周期中,同样的判断重复进行,直至保护动作或者启动退出。该方法提高了保护对发展性故障的动作速度和灵敏度,动模验证表明多数情况下可以在1/2周期内快速判断,区外故障时具有很强的抗TA饱和能力。  相似文献   

11.
通过对电流互感器(TA)饱和时电流特点的分析,提出了一种用于微机母线保护装置的TA饱和检测方案.该方案与基于瞬时值比率制动的差动保护相结合,在区外故障且TA饱和发生的情况下能够可靠闭锁保护,当发生区外转区内故障时能够快速开放保护.已有采用此方案的微机母线保护装置在电力系统中运行.  相似文献   

12.
TA饱和是变压器差动保护中待解决的关键问题之一。通过对变压器TA饱和的深入分析及仿真研究,得出结论:TA饱和时,区外故障电流含有大量明显的突变点,而区内故障电流连续。据此结论,文章提出了一种利用小波包变换区分变压器内外部故障的新方法。首先小波包变换分别对TA饱和情况下的内外部故障电流进行分解,然后对分解后的信号进行能量计算,将问题量化,可以直观地观察信号的差异,最后提出判据。仿真验证证明,该方法能够正确区分TA饱和情况下的内外部故障电流,能及时阻止可能造成的损害,并可防止变压器保护误动。  相似文献   

13.
Due to the different ratings of the current transformers (CT) located on different sides of power transformer, only the CT of low ratings will saturate when the power transformer experiences a heavy through fault, leading to false differential current. Such type of external fault can be identified from the internal one if the differential protection is equipped with the percentage restraint characteristic together with the method using operation time difference between pickup element and differential protection. However, the differential protection will be wrongly blocked as well if a cross-country fault occurs. According to the investigations in this paper, in the event of an external fault accompanied by the CT saturation, the variation of most samples of the secondary current of the saturated CT is inversely proportional to the variation of the differential current. Comparatively, this law cannot be followed on the occasion of an internal fault. In this case, the locus of the variation of the saturated secondary current with the differential current can be used to dynamically discriminate if an external fault develops to an internal fault. With the method proposed in this paper, the ability of the differential protection immune to cross-country fault can be improved further. The effectiveness of the proposed method is verified with the simulation tests.   相似文献   

14.
差流动态追忆法的研究   总被引:1,自引:0,他引:1  
母线保护中存在母线经高阻接地故障易导致差流特性不明显和母线区外故障易造成电流互感器严重饱和的现象。针对此在SGB750数字式母线保护装置中采用了突变差量电流快速启动及常规差电流慢速积分启动的双启动原理来区分检查各种特性的差流;采用差流动态追忆法抗区外故障电流互感器饱和,通过提取差流的突变量值和对饱和拐点进行分析以区分区内外故障。大量的动态模拟试验证明,这2个原理能抓住故障电流互感器传变特性,快速有效地判断出系统所发生的故障类型,判据准确可靠。  相似文献   

15.
电流互感器饱和是影响变压器差动保护可靠性的重要因素之一.传统的带比率制动特性的变压器差动保护在一定程度上提高了防止区外故障时保护误动的能力,但是如何及时处理区外转区内故障时保护的快速开放成为新的问题.文中提出一种简单的解除闭锁的方法,具体做法是,在选定的计算区域,利用变压器两侧电流综合负序分量的最大值与差动电流的综合负序分量进行比较,不仅能准确识别区内、区外故障,而且对于转换性故障也具有较好的识别能力.ATP仿真实验验证了该方法的有效性.  相似文献   

16.
一种防止变压器纵差保护区外故障误动的新方法   总被引:2,自引:1,他引:2  
在对电流互感器饱和进行理论分析的基础上,基于对差动电流采样值波形特征的识别,提出了一种防止变压器纵差保护区外故障误动作的新方法。该方法通过面积比较法和相位比较法两个判据,不仅能有效地区分内、外部故障,从而在区外短路且电流互感器严重饱和情况下对纵差保护实现实时闭锁,而且在闭锁时间段内能利用相位比较法有效地对系统进行监测,当发生区外转区内故障时适时解除闭锁信号,开放保护。判据利用了故障后第1周期的数据,不会影响比率制动特性的动作时间,计算简单,易于实现。大量仿真结果证明了该方法的有效性和正确性。  相似文献   

17.
基于数学形态学的电流互感器饱和识别判据   总被引:12,自引:13,他引:12  
利用数学形态学滤波器结合传统的时差法,实现了一种适用于差动保护的电流互感器饱和闭锁方案。由于数学形态学滤波器具有极佳的奇异点识别能力和噪声抑制能力,使得故障的发生和产生差流浪涌之间的时间差能通过多分辨率形态梯度进行实时、高精度的提取。因此,在TA饱和的情况下,通过合理设定该时问差的门槛值,外部故障和任何内部故障均可做到明显的区分。RTDS仿真结果表明,该方案可有效地防止因大穿越电流引起的电流互感器饱和而造成的差动保护误动,同时可保证对于内部故障的快速反应。  相似文献   

18.
鉴别TA饱和的改进时差法研究   总被引:30,自引:5,他引:25       下载免费PDF全文
电流差动保护中的TA饱和造成了对短路电流的变换误差 ,从而影响了差动保护的动作可靠性。文中在分析造成TA饱和的原因和饱和电流的特点基础上 ,提出了改进的时差法鉴别TA饱和的新方案 ,并对这一新方案进行了仿真分析。通过仿真分析可以发现 ,改进的时差法可以有效鉴别TA饱和 ,防止TA饱和引起的差动保护误动作  相似文献   

19.
基于数学形态梯度的变压器转换性故障识别新判据   总被引:2,自引:0,他引:2  
转换性故障的准确识别是变压器差动保护亟待解决的难题之一。该文利用TA饱和的变化特征对变压器转换性故障进行识别。当TA饱和后,在一次电流过零点附近总会存在一定的线性传变区,在区外故障期间表现为差流波形中含有间断,而区内故障时不存在间断。通过对相邻2个极值点之间的差流波形进行形态梯度处理,将形态梯度处理后的波形进行3等分,根据3段波形面积的相对大小来判断差流波形中是否存在间断,从而实现对变压器转换性故障的正确识别。仿真结果表明,该方法能在TA饱和情况下正确识别变压器区内、外故障,并对变压器发生转换性故障(区外转区内)做出正确判断。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号