首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 102 毫秒
1.
柔性直流电网直流故障短路电流具有上升速度快、峰值高等特点。当前,尚不成熟的故障电流抑制技术在一定程度上阻碍了柔性直流电网的大规模建设和发展。已有学者通过在直流电网中增加直流限流器或改进换流器拓扑的方式来抑制直流故障电流。然而上述技术方案会增加直流电网的建设成本。该文通过充分挖掘半桥型模块化多电平变换器(modular multilevel converter,MMC)的控制潜力,提出一种适用于半桥型MMC的自适应限流控制策略。该控制策略通过在直流故障期间快速改变投入的子模块数量,从而快速降低换流器直流电压达到抑制故障电流的目的。首先介绍限流控制的基本原理以及控制器结构,分析并推导半桥型MMC的直流故障电流和桥臂故障电流的计算方程,进一步仿真验证限流控制作用下故障电流的计算方程,最后在基于半桥型MMC的四端柔性直流电网中对限流控制策略的有效性进行仿真验证。仿真结果表明:限流控制使得直流断路器((DC circuit breaker,DCCB)的开断电流减小4.92k A(46.95%),耗散能量减小26.1MJ(67.93%),并且减小故障期间桥臂电流的峰值,降低了换流器过流闭锁的风险。  相似文献   

2.
直流侧故障切除能力是衡量直流输电系统的重要指标。针对子模块采用半桥拓扑的模块化多电平换流器(MMC)直流侧发生双极短路故障的机理进行分析,定量研究了影响故障电流峰值的主要因素;并将结论延伸至多端直流电网,提出了不同电网拓扑和不同位置发生故障后10 ms内各换流站出口、线路电流的计算方法;在PSCAD/EMTDC仿真软件中搭建三端电磁暂态仿真模型,并将故障电流计算结果与仿真结果进行对比验证,结果表明所提计算方法具有一定的精度和速度,对直流电网规划、直流断路器选型具有一定的指导意义。  相似文献   

3.
针对传统半桥型模块化多电平换流器(MMC)无法阻遏故障电流,以及现有具备故障清除能力的MMC故障清除时间过长的问题,提出一种具有直流故障清除能力的主动接地式MMC拓扑。在传统半桥型MMC基础上,在换流器各相上、下桥臂电感外侧增加电流转移支路,在换流器直流出口增加断流支路和能量吸收支路。当MMC直流侧发生双极短路时,断流支路能够有效地隔离断路器和直流线路,电流转移支路能够消耗交流电流和电感电流,能量吸收支路能够快速清除故障电流。文中对主动接地式MMC的拓扑结构及其实现故障隔离和清除的过程进行详细分析,给出了关键参数的设计和计算方法,并利用RT-LAB OP5607软件搭建双端和四端MMC仿真模型,对比分析可知,所提出的主动接地式MMC能够在十几毫秒内清除故障,在经济性和实用性方面具有很大的优势。  相似文献   

4.
混合型MMC拓扑及应用于MTDC直流故障穿越能力分析   总被引:2,自引:2,他引:0  
模块化多电平换流器(MMC)已成为高压直流输电领域最具前景的换流器技术之一。然而,与低电平电压源型换流器(VSC)相同,目前研究较多的半桥型MMC缺乏闭锁直流故障的能力。文中分析了不同结构的MMC在发生直流故障时短路电流的情况,提出了一种改进的MMC拓扑结构,基于错位层叠理论和换流器闭锁直流故障的原理,设计了一种适用于多端柔性直流(VSCMTDC)输电系统的混合型MMC拓扑结构,并结合VSC-MTDC系统直流故障时的"握手原则"详细说明了实现故障线路切除、非故障线路恢复的过程。最后,以典型的四端直流输电系统为例,通过PSCAD/EMTDC建模仿真,对故障后果最为严重的直流侧双极短路故障下的系统特性进行了分析验证。结果表明,基于该拓扑结构的多端直流系统能够在直流侧发生故障时快速闭锁换流器,并在短时间内恢复非故障线路的正常运行。  相似文献   

5.
针对模块化多电平换流器(modular multilevel converter,MMC)在直流侧发生双极短路的故障情况,建立了MMC闭锁后的故障电流回路,给出了二极管以及保护晶闸管的电流分配和结温理论计算方法,考核直流双极短路故障耐受能力。在MATLAB/Sinulink下进行了换流阀闭锁后故障电流回路的建模与仿真,并在MMC背靠背试验系统中进行了试验研究。仿真和试验结果表明,所提分析和计算方法准确可行,该方法对校核模块化多电平换流器在实际工程中的直流双极短路故障耐受能力以及器件选型具有重要的理论指导意义。  相似文献   

6.
针对现有直流电网直流侧短路简化计算方法普遍不适用于对称单极接线系统及短路故障后故障电流急剧上升导致换流站闭锁的问题,提出了适用于对称单、双极接线方式直流电网的通用计算方法和直流电网拓扑优化方法。首先,分析了不同接线方式下的直流电网直流侧单、双极短路故障特性。其次,基于阻抗频率特性提出了适用于不同接线方式直流电网的故障电流计算方法,并得到了评价故障电流水平的简化指标,有效地评估直流电网拓扑变化时的故障电流水平,实现多端系统的拓扑优化,降低单极接地故障电流水平。最后,通过电磁暂态仿真案例验证了所提计算方法和简化指标的准确性和有效性。  相似文献   

7.
陈宁  齐磊  崔翔  马江江 《电力建设》2019,40(4):119-127
在柔性直流电网工程设计与直流断路器选型中,电网的短路电流是重要的参考依据。针对以架空线作为金属回线网络的真双极柔性直流电网,文章提出了一种单极接地短路电流计算方法。该方法的基本原理是通过建立单极接地故障时电网的状态方程求解柔性直流电网中的短路电流。以张北可再生能源柔性直流电网试验示范工程为例,通过对比理论计算与系统仿真结果,证明了该方法的正确性与高效性。文中利用该方法分析了限流电抗器电感值等参数对短路电流的影响规律,为工程设计提供了一定参考。文章提出的计算方法可以广泛地适用于不同端数的基于模块化多电平换流器(modular multilevel converter, MMC)的柔性直流电网工程,为柔性直流电网工程的参数设计与直流断路器的选型提供支撑。  相似文献   

8.
对于柔性直流输电系统的双极短路故障问题,以三端基于模块化多电平换流器的高压柔性直流输电(modular multilevel converter based high voltage direct current transmission,MMC-HVDC)为研究对象,阐述了MMC的工作原理及其直流母线主要故障类型,分析了换流器内部直流母线双极短路故障特性及短路电流计算方法,并搭建基于PSCAD的三端MMC-HVDC系统,对其直流母线故障进行仿真分析。仿真结果表明,当发生直流母线双极短路故障时,直流电压骤降,直流侧电流、交流侧电流和桥臂电流激增,严重影响三端MMCHVDC系统的安全稳定运行。  相似文献   

9.
柔性直流电网可灵活消纳大规模可再生能源,但直流线路故障后严重的过电流问题是制约其发展的重要因素之一。短路故障电流的分析和计算对于系统参数的设计和选取具有重要意义,但是由于换流站是高度复杂的非线性系统,无法得到故障电流的精确解析表达式,因此短路故障电流往往通过仿真得到。对于故障电流近似表达式的研究也往往只能针对双端直流系统进行,对于直流电网下的线路短路故障电流则无能为力。该文根据模块化多电平换流器(modular multilevel converter,MMC)柔性直流电网系统参数的基本特点对其进行合理的简化,得到线路短路故障电流的近似解析解的求解方法,可以在故障后一段时间内较为准确的描述故障电流的整体趋势,可为直流线路保护定值和直流断路器相关参数的选取和整定提供一定的依据。  相似文献   

10.
模块化多电平换流器(modular multilevel converter, MMC)直流侧故障后短路电路急剧上升,严重影响直流电网安全。为限制故障电流,提出一种基于子模块两级主动控制的直流短路限流控制方法(submoduletwo-stage active control,STAC),通过两段故障检测判据和预设最大短路电流,构造关于直流电流的分段函数K,其输出决定减投子模比例,故障后降低直流电压抑制短路电流,同时设计适应于不同运行条件换流站MMC的控制参数,并且仅通过控制动作限流不产生额外成本。STAC不影响系统正常运行,限流过程维持功率传输。最后在四端直流电网中对STAC限流效果及其性能进行仿真分析。结果表明,所提限流方法能有效抑制故障电流,流经直流断路器故障电流降低49.7%,桥臂电流峰值降低23.15%,故障后100 ms恢复直流电压。  相似文献   

11.
由于基于半桥模块化多电平换流器(half bridge modular multilevel converter,HB-MMC)的柔性直流电网系统控制方式和自身拓扑结构的特殊性,直流侧发生短路故障时,其故障电流具有上升速度快、峰值高的特点,极易损坏换流站中的半导体器件。又由于直流故障电流没有自然过零点,直流断路器难以将故障切除,因此,直流输电线路的短路故障对保护系统提出了更高的要求。基于柔性直流电网的拓扑结构、直流侧故障特征,从直流故障电流的限制、直流输电线路保护原理等方面,系统地介绍了国内外基于HB-MMC直流电网的直流输电线路故障处理与保护技术的研究现状,重点分析了柔性直流电网直流线路的保护原理,探讨了目前柔性直流电网故障处理和保护技术面临的关键问题及未来进一步的研究方向。  相似文献   

12.
《高压电器》2017,(6):96-104
由于直流断路器成本较为昂贵,尚处于试验阶段,具备直流故障电流阻断能力的MMC拓扑才是实现输配电网可控性,提高MMC运行可靠性的关键。文中在分析传统半桥型模块化多电平换流器(half bridge sub module based modular multilevel converter,HBSM-MMC)直流侧故障机理的基础上,对具有直流故障电流阻断能力MMC相关研究进行综述。分析了桥臂优化MMC的拓扑结构及直流故障抑制能力,包括子模块混合型MMC及二极管阻断型MMC;分析了单相优化MMC拓扑结构及直流故障电流阻断能力,包括桥臂交替导通MMC和混合级联型MMC。仅从理论角度来说,具备直流故障电流阻断能力的MMC拓扑结构研究已经较为成熟,但混合子模块优化控制、改进子模块封装、串联子模块和开关器件的协调配合、器件冷却等工程实现诸多问题还有待进一步研究。  相似文献   

13.
基于离散模型的柔性直流电网短路电流计算方法   总被引:1,自引:0,他引:1  
为计算柔性直流电网故障后的短路电流,提出基于离散模型的柔性直流电网短路电流数值计算方法.针对基于模块化多电平换流器的柔性直流电网,分析直流侧短路故障后的等效电路;建立基于后退欧拉法和梯形积分法的换流器电感、电容和线路的离散化模型,以及不同故障类型下换流站的离散化模型;在此基础上,设计直流电网不同类型故障电流数值求解算法.基于RT-lab平台搭建四端柔性直流电网仿真模型,对比分析了所提出方法的求解计算数值与详细模型仿真结果.结果表明所提算法能够准确获得故障电流值,与详细模型仿真结果相比误差小于5.5%.  相似文献   

14.
考虑故障限流器动作的直流电网限流电抗器优化配置   总被引:3,自引:1,他引:2  
模块化多电平换流器(MMC)型柔性直流电网作为光伏和风电等新能源汇集的有效手段,其直流故障限流是线路保护所面临的重要技术挑战之一。根据直流电网双极短路故障后电容放电机理,考虑故障限流器投入过程与直流断路器的切断过程,并兼顾了金属氧化物避雷器(MOA)的能量耗散特性,在PSCAD/EMTDC电磁仿真平台下,基于相域频变架空线模型,研究了投入故障限流器后的直流故障电流特性。在对称双极四端直流电网拓扑中,以各个直流出口故障点的直流断路器切断电流之和最小、故障限流器和直流断路器中的MOA吸收的能量之和最小作为两个目标函数,采用simplex算法对直流电网中各条直流线路的限流电抗器进行了多目标优化配置,并给出不同权重下的各条直流线路的限流电抗优化配置方案。  相似文献   

15.
基于模块化多电平换流器(modular multilevel converter,MMC)的柔性直流电网在直流短路故障时电流峰值较高且上升速度极快,严重时会造成MMC闭锁从而导致系统大面积停运。为在短时间内限制故障电流对系统的影响,文中提出一种对半桥型MMC适用的故障限流组合控制策略,利用MMC自身的高度可控性,无须外加限流装置,即可达到故障限流效果,并降低对直流断路器的技术需求。首先,文中阐述了限流组合控制策略中2种不同的限流环节及其基本原理。其次,分别分析2种限流环节对直流故障电流、交流电流以及桥臂电流的影响,推导限流组合控制下的直流故障电流计算式。最后,在PSCAD/EMTDC平台搭建半桥型MMC四端直流电网模型进行仿真分析,结果表明所述限流组合控制策略能够有效限制直流故障电流,减小故障点近端换流器的功率和电压波动,降低交流电流和桥臂电流的过流峰值。  相似文献   

16.
针对模块化多电平换流器(MMC)在直流侧发生双极短路的故障情况,建立了MMC阀闭锁后的故障电流回路,给出了MMC阀中保护晶闸管的电流分配和结温理论计算方法。在Matlab/Simulink下进行了MMC阀闭锁后故障电流回路的建模与仿真,并在MMC背靠背实验系统中进行试验研究。仿真和试验结果表明,所提分析和计算方法准确可行,对MMC实际工程中保护晶闸管的选型、损耗计算及热设计具有重要的理论指导意义。  相似文献   

17.
近年来越来越多的海上风电场采用柔性直流输电的方式接入大电网。然而,传统半桥式子模块模块化多电平换流器(modular multilevel converter,MMC)的拓扑特点决定了直流系统在发生直流双极短路故障时,不能有效抑制故障电流,而闭锁和交流断路器跳闸会导致海上风电场脱网。为解决这一问题,提出了一种基于半桥加全桥子模块混合式MMC拓扑的协同控制策略。通过换流器的直流电压控制,在直流双极短路故障发生后,故障电流能够得到迅速抑制。为保证系统中有功功率平衡,海上风电场将根据直流电压调整输出功率限幅。该控制策略能够在不闭锁换流器的情况下进行直流故障穿越,并维持换流阀内子模块电压稳定。最后在MATLAB/Simulink中搭建仿真模型,验证该策略的可行性和有效性。  相似文献   

18.
针对架空线柔性直流电网线路故障,提出了基于混合型MMC的主动限流控制方法,从而降低对直流断路器开断速度、开断容量以及吸收能量的要求,减少直流电网建设成本、提高直流电网可利用率。该文首先研究了换流器的交/直流电压解耦可控性,给出了主动限流控制器的控制架构。为了解决直流故障穿越期间,桥臂电容电压可能会短时越限的问题,提出了在内环直流电流控制器附加直流电流指令动态限幅控制器的方案。提出了主动限流控制策略的一种优化手段—电流目标预设控制,分析了不同控制器延时对主动限流控制的影响。计及主动限流控制,研究了单换流器系统和直流电网故障前后直流故障电流演变机理。最后,分别在单换流器系统和直流电网系统中仿真验证了前文理论分析的正确性的有效性。  相似文献   

19.
随着模块化多电平换流器(modularmultilevel converters,MMC)在架空线直流输电和柔性直流电网中的广泛应用,直流线路故障清除问题越来越突出,如何实现直流线路故障的快速清除成为制约MMC柔性直流电网发展的关键问题之一。作为直接有效的解决方案,混合高压直流断路器(direct current circuit breaker,DCCB)还不够成熟,高速大开断容量DCCB的研制仍有困难。文中通过挖掘和利用MMC控制的灵活性,提出一种适用于架空线半桥型MMC柔性直流电网的源网配合自适应故障清除方案。在直流故障期间,该方案利用MMC调压控制策略减少源侧子模块投入数量,降低换流器桥臂单元输出电压,并与网侧断路器预充电电容电压自适应配合,使MMC桥臂单元输出电压小于预充电电容电压,利用电压差使故障电流迅速下降至零,达到切断故障电流并清除故障的目的。首先介绍所提故障清除方案中源侧MMC调压控制原理和网侧断路器拓扑结构,然后分析该方案的工作原理,并推导该方案下半桥型MMC的直流故障电流计算方程,给出调压控制器控制系数和网侧断路器元件参数设计方法,最后在PSCAD/EMTDC电磁暂态仿真平台上搭建基于半桥型MMC的四端柔性直流电网模型,对所提故障清除方案的有效性进行仿真验证。  相似文献   

20.
提出了采用混合型模块化多电平换流器(hybrid modular multilevel converter,hybrid MMC)和直流开关构建柔性直流电网进行架空线远距离电能传输的方案。针对由全桥型子模块和半桥型子模块组成的混合型MMC,分析了其拓扑结构、基本运行原理和直流电压运行区间,提出了混合型MMC的三自由度控制架构,并详细分析了直流故障穿越控制策略,进而设计了混合型MMC构成的柔性直流电网的故障清除策略和多次重启动时序。故障期间,混合型MMC无须闭锁IGBT,可控制故障电流至0,从而保持不间断运行、持续向交流系统提供无功支撑。3次重启动失败后,架空柔性直流电网配置的直流开关在零故障电流下开断以隔离故障电流通道,直流电网重启,线路潮流发生转移。最后在PSCAD/EM TDC仿真平台验证了所提出的故障清除策略及重启动时序的可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号