首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
通过化学共沉淀和高温固相反应法合成不同Li/M比(Li为锂元素的物质的量,M为过渡金属元素总物质的量)的LiNi0.7Co0.1Mn0.2O2正极材料,采用XRD、SEM、恒流充放电测试系统和电化学工作站研究Li/M比对材料结构、形貌和电化学性能的影响。结果表明,Li/M比为1.10的LiNi0.7Co0.1Mn0.2O2正极材料层状结构完整,颗粒形貌良好,电化学性能最优。0.2 C充放电条件下的首次放电比容量达到204.0 mAh/g;1.0 C充放电条件下循环充放50圈后放电比容量为187.0 mAh/g,容量保持率达到97.2%。  相似文献   

2.
以NiSO4·6H2O、CoSO4·7H2O、MnSO4·H2O、NH3·H2O及NaOH为原料,采用共沉淀方法在LiNi0.8 C00.15 Al0.05 (OH)2球形粒子表面包覆一层Ni1/3 Co1/3Mn1/3(OH)2三元材料前驱体,配锂后在750℃下、氧气气氛中焙烧12 h,合成复合层状材料Li[(Ni0.8 Co0.15Al0.05)0.97(Ni1/3Co1/3Mn1/3)0.03]O2.复合层状材料具有核壳结构,包覆壳层的厚度约为1μm.复合层状材料在2.8~4.3 V充放电,0.1C首次放电比容量为188.2 mAh/g;0.2 C循环100次的容量保持率为96.2%;在55℃下以0.2C循环100次,放电比容量保持在163.2 mAh/g.  相似文献   

3.
利用正丁醇锆的水解反应,以碳酸锂为锂盐前驱体,在高镍三元LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2(NCM811)颗粒表面成功制备均匀且完整包覆的Li_2ZrO_3(LZO)纳米包覆层,厚度约为18nm。循环伏安(Cyclic Voltammetry,CV)和电化学交流阻抗(Electrochemical Impedance Spectroscopy,EIS)测试结果表面,摩尔质量分数为1 mol%的Li_2ZrO_3表面修改层能有效地抑制高镍三元NCM811正极材料与电解液之间的界面副反应,降低了其循环过程中的电化学极化,从而提高了正极材料的循环稳定性和倍率性能。在工作电压为2.7V-4.3Vvs.Li~+/Li和电流密度为1C条件下,经包覆处理的NCM811@LZO正极材料首次放电比容量为177.5mAh/g,50次循环后保持在143.9mAh/g,均高于纯NCM811正极材料的149.3mAh/g和136.6mAh/g。  相似文献   

4.
张海朗  刘水香 《电池》2013,43(1):31-34
以溶胶-凝胶法制备氯阴离子掺杂型正极材料LiNi1/3 Co1/3Mn1/3 O2-xClx(x=0、0.05、0.10和0.15).用TG/DTG测试分析了材料的相形成过程.XRD分析结果表明:在空气气氛中以850℃煅烧20 h制备的材料,具有良好的六方单相层状结构.电化学性能测试结果表明:掺杂抑制了高电压区域的相变过程,提高了材料的可逆性;x=0.10的样品具有良好的循环性能和倍率性能,在2.0~4.6V循环,0.15 C、1.00 C首次放电比容量分别为198.7 mAh/g、166.4 mAh/g,第25次0.15 C循环的放电比容量为197.9 mAh/g.  相似文献   

5.
锂离子电池正极材料LiNi0.8 Co0.2 O2的研究进展   总被引:2,自引:0,他引:2  
综述了LiNi0.8co0.2O2的研究进展.对固相法、共沉淀法、溶胶.凝胶法、络合法、电解法和共熔直接混合法等制备方法进行了介绍;对高温稳定性、循环稳定性和首次充放电容量等电化学性能的改善进行了总结.  相似文献   

6.
锂离子电池正极材料LiNi1/2 Mn1/2O2的合成   总被引:1,自引:1,他引:0  
李鹏  韩恩山  檀柏杉  常亮 《电池》2005,35(2):95-96
采用溶胶-凝胶法合成出LiNi1/2Mn1/2O2,研究了合成温度和时间对材料性能的影响.利用XRD、DSC、XPS、恒流充放电、循环伏安对其进行了表征.结果表明:用柠檬酸作配合剂,900℃焙烧9 h合成出的LiNi1/2Mn1/2O2,在2.5~4.3 V、电流为15 mA/g的条件下进行充放电测试,首次充放电容量达到138 mh/g,4.3 V下的热分解温度明显高于LiCoO2.  相似文献   

7.
用共沉淀法制备镍锰氢氧化物前驱体,并通过高温固相反应在800℃空气气氛下煅烧12h合成锂离子蓄电池正极材料LiNi0.5Mn0.5O2,研究了冷却速度和升温制度对材料电化学性能的影响。结果表明,在500℃预处理5h,800℃煅烧完毕立即从炉中取出,环境温度下在空气中冷却,得到的样品比容量能达到180mAh·g-1,材料在2.5~4.6V范围内循环时性能不佳,当采用恒流/恒压模式,在2.5~4.3V范围内,材料具有良好的循环性能。  相似文献   

8.
在氧气气氛下,以乙酸盐为原料,以柠檬酸为螯合剂,用溶胶凝胶法制备出了锂离子电池正极材料LiNi0.8Co0.2O2。研究了不同合成温度和Li/(Ni Co)配比对材料的结构和电化学性能的影响。XRD检测结果表明:合成温度为750℃、合成时间为18h、Li/(Ni Co)=1.10的正极材料LiNi0.8Co0.2O2具有完整的晶型结构;充放电性能测试结果表明,该材料在0.5C下,首次充放电容量分别为230.0m Ah/g和192.6m Ah/g,首次充放电效率为83.73%,经过50次循环仍有170.5m Ah g/,容量保持率为90.87%。  相似文献   

9.
采用高温固相法在相同条件下合成了LiNi_(0.6)Co_(0.1)Mn_(0.3)O_2与LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2正极材料,利用XRD、SEM表征了材料的结构与形貌,通过恒电流充放电测试、循环伏安(CV)和交流阻抗(EIS)研究了其电化学性能。结果表明,室温条件下以0.2 C倍率在3.0~4.3 V电压范围内,LiNi_(0.6)Co_(0.1)Mn_(0.3)O_2的首次放电比容量为171.8 mAh/g,1 C循环100次后容量保持率为78.5%;LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2的首次放电比容量为174.6 mAh/g,1 C循环100次后容量保持率为83.0%。CV与EIS测试表明,相比LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2,LiNi_(0.6)Co_(0.1)Mn_(0.3)O_2材料有更大的极化与电荷转移阻抗。  相似文献   

10.
LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2材料因其比能量高、成本低等优势,在未来的动力电池方面有着非常广阔的应用前景。对LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2材料的结构作了简述,介绍了几种经典的制备方法,对其目前存在的问题以及国内外在材料改性研究方面的进展作了梳理,并展望了未来的发展趋势。  相似文献   

11.
采用共沉淀法合成球形前驱体Ni_(0.8)Mn_(0.2)(OH)_2,混合LiOH·H_2O通过高温烧结制备出锂离子电池镍基正极材料LiNi_(0.8)Mn_(0.2)O_2。通过X射线衍射(XRD)、扫描电镜(SEM)、热重-差热分析(TG-DTA)以及恒电流充放电测试对材料进行表征,研究了烧结温度和烧结气氛对材料结构、形貌和电化学性能的影响。结果表明:800℃纯氧气氛(0.6L/min)下煅烧12h合成的材料晶型完整,是典型的六方晶系α-NaFeO_2型结构;SEM测试显示材料平均粒径在10μm左右;电化学性能测试显示材料在25℃、2.75~4.20V、0.2C充放电条件下,首次放电比容量达173.6mAh/g,循环95次后,容量保持率达90.73%。  相似文献   

12.
锂离子电池三元正极材料LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2具有可逆比容量高、成本低等优点,应用前景广阔。阐述了LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2的晶体结构特征及作为锂离子电池正极材料使用时的优、缺点;综述了LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2的制备方法及离子掺杂、表面包覆等对其电化学性能的影响;评述了LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2当前面临的主要问题及解决途径。  相似文献   

13.
宋飞 《电源技术》2012,36(9):1270-1272
用共沉淀工艺制备出锰镍复合氢氧化物[M(OH)2,M=Ni、Mn和Co],利用该复合氢氧化物前驱体和锂盐球磨混均后,高温焙烧,然后自然冷却合成出一种新型的锂离子电池正极材料LiNi0.5Mn0.4Co0.1O2。通过扫描电镜(SEM)、X射线衍射(XRD)和电化学性能测试,发现该材料具有较小的表面积和层状结构,同时表现出较高的充放电容量、较佳的循环性能和较好的结构稳定性。  相似文献   

14.
采用共沉淀-喷雾干燥法制备了锂离子电池球形Li Ni0.8Co0.15Al0.05O2正极材料,通过热重分析法(TG)、X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)和电化学测试对材料的晶体结构、形貌及电化学性能进行了测试和表征。结果表明材料具有良好的层状结构,球形颗粒粒径约10μm;在30℃下,2.5~4.3 V循环,以20 m A/g放电,首次比容量达186.3 m Ah/g,循环50次后容量保持率为84.1%。  相似文献   

15.
采用共沉淀法制备LiNi_(0.5)Mn_(0.5)O_2正极材料。并用X射线衍射(XRD),扫描电镜(SEM)对材料结构及形貌进行分析。讨论了不同保温时间对LiNi_(0.5)Mn_(0.5)O_2正极材料的影响,及不同电压下LiNi_(0.5)Mn_(0.5)O_2正极材料的电化学性能。结果表明,保温时间为16 h制备的正极材料电化学性能最优,在0.5 C倍率下,100次后容量保持率为99.02%;材料分别在2.75~4.2 V,2.75~4.3 V,2.75~4.35 V,2.75~4.4 V,2.75~4.5 V,2.75~4.6 V下进行充放电时,首次放电比容量分别135.6、143.6、154.1、165.5、177.9、184.1 m Ah/g。充放电电压越高,循环性能越差。  相似文献   

16.
采用化学共沉淀法预先合成球形前驱体Ni0.5Co0.2Mn0.3(OH)2,再与锂源共混后高温煅烧合成高容量正极材料Li Ni0.5Co0.3Mn0.2O2。探讨了不同烧结制度对材料结构性能的影响。X射线衍射(XRD)结果表明,产物结构为α-Na Fe O2型层状结构。扫描电子显微镜(SEM)显示材料具有良好的球形形貌。测试材料的电化学性能,在2.75~4.20 V和2.75~4.35 V充放电截止电压,0.5 C充放电电流下,首次放电比容量分别为162.2和172.6 m Ah/g,循环3周后容量保持率分别为96.73%和94.62%。材料还表现出良好的倍率性能。  相似文献   

17.
以球形Ni(OH)2、Co3 O4和LiOH· H2O为原料,采用改进的两步固相法制备正极材料LiNi0.8 Co0.2 O2.考察了预处理温度和时间对材料结构、形貌和性能的影响.优化条件为:将Ni(OH)2和Co3O4在750 ℃下预处理4h,再加入LiOH·H2O,在750℃焙烧15 h.在此条件下制备的材料为纯相α-NaFeO2型层状结构,没有杂质,电化学性能良好.在2.8~4.3 V充放电,0.1C首次放电比容量约为184 mAh/g;经过50次不同倍率的循环,0.1C放电比容量仍有164.7 mAh/g.  相似文献   

18.
采用溶胶-凝胶-自蔓延燃烧法合成了LiNi0.5Mn1.5O4和LiCr0.1Ni0.45Mn1.45O4两种高电压正极材料。通过X射线衍射(XRD)表明铬离子掺杂未改变LiNi0.5Mn1.5O4的晶型结构,但改善了其晶型生长。扫描电镜(SEM)表明两种样品呈规则正八面体外形,颗粒较均匀,LiNi0.5Mn1.5O4平均粒径大约为400 nm,LiCr0.1Ni0.45Mn1.45O4平均粒径大约为200 nm。电化学性能测试结果表明,在1 C放电倍率下,两种电池的首次放电比容量分别为111.0 mAh/g和121.5 mAh/g,以容量保持率为首次放电比容量85%为截止条件,分别可以实现32个和51个稳定循环。在此条件下,LiCr0.1Ni0.45Mn1.45O4/Li电池的平均中值电压为4.55 V,略高于LiNi0.5Mn1.5O4/Li电池4.51 V。倍率性能测试结果表明,LiCr0.1Ni0.45Mn1.45O4/Li电池及LiNi0.5Mn1.5O4/Li电池在0.5 C、1 C下放电比容量分别可保持0.2 C时的91.9%、87.1%和91.1%、83.6%。铬离子掺杂可明显改善LiNi0.5Mn1.5O4的综合性能。  相似文献   

19.
王路  尹鸽平  张小聪  田波义  高蕾 《电源技术》2004,28(11):661-666
总结了聚合物锂离子蓄电池正极材料的研究现状,通过研究提出了一种新型正极改性材料LiNi0.8Co0.2O2的制备工艺,该材料在聚合物锂离子蓄电池中的应用研究表明,LiNi0.8Co0.2O2改善了材料的放电性能并降低了电池成本。本研究将凝胶-溶胶法和喷雾干燥法相结合,采用高分子化合物RB-1(由多元有机酸和高分子聚合物例如明胶和淀粉等组成)来调整溶胶体,结合煅烧过程中对温度和时间的控制,研究出溶胶-喷雾干燥-煅烧的制备工艺。实验以差热分析-热重分析(DTA-TGA)法来分析喷雾干燥的过程和作用,以X射线衍射(XRD)分析材料的结构,以容量测试来分析材料的放电性能。所得LiNi0.8Co0.2O2具有优良的层状结构,应用于聚合物锂离子蓄电池中,可使电池的可逆比容量达到180mAh/g,并保持良好的稳定性和循环寿命。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号