首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
为增强电网故障下双馈风力发电系统(DFIG)的低电压穿越(LVRT)运行能力,提出一种DFIG转子侧变换器(RSC)强励控制策略。在基于定子磁链定向的矢量控制策略中增加多频比例谐振控制器(MFPR),当电网故障造成发电机定子电压跌落时,多频比例谐振控制器能够对转子侧变换器(RSC)的输出励磁电压进行补偿,抑制转子故障电流,实现DFIG的低电压穿越运行。分析了转子电压等级与DFIG的低电压穿越运行区间的关系,为DFIG转子侧变换器的电压等级设计标准提供了参考依据。控制系统结构简单,保证了系统的响应速度,可同时对电网对称跌落和不对称跌落产生的故障电流进行抑制。通过对1.5 MW双馈风力发电机组进行仿真研究,验证了理论分析的正确性和所提控制策略的可行性。  相似文献   

2.
采用串联网侧变换器的DFIG风电系统低电压穿越控制   总被引:2,自引:0,他引:2  
双馈感应发电机(DFIG)因其对电网故障的敏感性,其低电压穿越运行控制技术备受关注.文中针对定子侧加装串联网侧变换器的新型DFIG风电系统,详细研究了其低电压穿越运行特性,提出了一种适用于新拓扑下发电系统的运行控制方案:通过控制串联网侧变换器抑制定子磁链暂态直流分量及电网电压负序分量对发电机转子侧的不良影响;通过控制转子侧变换器进一步限制故障时发电机的定、转子电流,从而实现发电系统的低电压穿越运行.仿真结果表明:采用所提出的控制方案,可实现电网故障时DFIG风电系统的零电压穿越运行;采用新拓扑的DFIG风电系统具有优良的电网对称及非对称短路故障穿越能力.  相似文献   

3.
本文介绍了风力发电系统的无功补偿部分成分以及双馈电机的转速、无功控制,然后研究了双馈风力发电(DFIG)系统的低电压穿越现象,指出双馈风力发电机自身的无功补偿是该系统电压稳定的一种有效选择。仿真结果表明,在故障期间,DFIG风电机组能够发出无功给电网提供电压支持,实现电网规程所要求的低电压穿越功能。  相似文献   

4.
以双馈感应发电机( DFIG)为主的风力发电机组在电力系统中所占的比例逐渐增大,实际应用中,必须将风力发电机与电网作为一个整体来控制,因此,需要研究在电网电压瞬间跌落时,双馈风电机组的低电压穿越(LVRT)运行能力.在此应用PSCAD/EMTDC对2 MW DFIG接入电网进行系统建模,研究对称故障时电网电压跌落对DF...  相似文献   

5.
双馈型风力发电系统低电压穿越技术综述   总被引:5,自引:0,他引:5  
杨耕  郑重 《电力电子技术》2011,45(8):32-36,59
随着双馈感应发电机( DFIG)风电场在并网风电容量中比重的增加,为了确保电力系统的可靠运行,提高DFIG风电场的低电压穿越(LV RT)能力显得尤为重要.首先介绍了风电场并网准则对LVRT的要求,接着分析了电网电压骤降故障下DFIG的瞬态特性及其LVRT技术的难点;在系统总结和评价国内外现有DFIG系统的LVRT技术...  相似文献   

6.
为了提高双馈感应风力发电机(DFIG)控制系统动态响应速度,提出一种基于电网电压定向直接功率控制(DPC)的双馈风力发电运行综合控制策略,实现了与矢量控制相同的无冲击电流并网及有功、无功解耦控制功能,建立了基于直接功率控制的双馈风力发电机空载并网、稳态运行及电网发生故障情况下低电压穿越的控制模型,并在3kW的双馈风力发...  相似文献   

7.
双馈感应式风力发电系统低电压穿越研究   总被引:7,自引:2,他引:5  
双馈感应式风力发电机组以其变流器容量小,有功和无功功率可独立解耦控制的特点,已成为目前变速恒频风力发电机组的主流机型。正因为双馈感应发电机(Double Fed Induction Generator,简称DFIG)的变流器容量小,所以它对电网电压扰动的抵御能力较弱。为防止扩大电网故障,目前欧洲电力系统要求风力发电系统具备低电压穿越(Low Voltage Ride Through,简称LVRT)能力。这里建立了简化的DFIG低电压穿越系统,在22 kW实验平台上进行了实验,其结果说明Crowbar电路能抑制电机定、转子电路中的暂态电流,系统基本具备了低电压穿越能力。  相似文献   

8.
崔柯  居荣  吕进 《电气技术》2014,(6):69-72
本文以国内外电网中所占比例最大的双馈感应式风力发电系统为对象来研究风力发电机组的低电压穿越能力。首先详细分析了双馈感应式风力发电系统的基本工作原理,在此基础上设计了转子侧变流器和网侧变流器的改进型矢量控制策略并在Matlab/Simulink环境下对其进行了建模仿真;然后根据风力发电系统故障的特性提出低电压穿越方案:电网短路故障期间,通过在风力发电机机端与电网之间串联动态电压调节器(DVR)来实现双馈风力发电系统的故障穿越,最终提出了基于定子侧DVR的低电压穿越新型控制方案。通过仿真实验,本文提出的低电压穿越方案能有效提高风力发电系统的低电压穿越能力。  相似文献   

9.
基于多回路理论,建立了双馈感应发电机DFIG(Doubly-Fed Induction Generator)在定子绕组匝间短路SWITSC(Stator Winding Inter-Turn Short Circuit)故障情况下的数学模型,并在MATLAB/Simulink环境下搭建了仿真模型,基于MATLAB/Simulink的仿真例程证明了该模型的正确性。进而,对比分析了正常DFIG、带有SWITSC故障的DFIG在外部电网电压骤降情况下的动态响应,得出结论:在SWITSC故障情况下,DFIG的有功功率降低、转速下降、在电网电压骤降时向电网提供无功功率支撑的能力下降、自身稳定性降低;并且,上述后果随SWITSC故障严重程度以及电网电压骤降程度的增加而愈发明显。结论为双馈风力发电机组在SWITSC故障情况下的低电压穿越分析提供了理论支撑。  相似文献   

10.
电网电压跌落引起双馈感应风电机组(double fed induction generator,DFIG)定子电压跌落,造成DFIG定子磁链振荡,从而引起定、转子产生较大的振荡电流,特别是对双脉冲宽度调制(pulse width modulation,PWM)变换器产生极大的危害。若不采取有效的低电压穿越(low voltage ride through,LVRT)控制措施,将会导致DFIG从电网解列,危及电力系统安全运行。提出一种直流侧的低电压穿越技术,通过在DFIG背靠背变流器直流母线电容上加装超级电容储能系统,利用其功率密度大、充电时间短、使用寿命长、温度特性好等特点,来进行短时大功率充放电,在电网电压跌落、直流侧电压波动期间,将能量储存在超级电容中,同时也可以释放多余的能量补偿直流侧电压,从而有效地提升DFIG低电压故障的耐受能力,实现DFIG的低电压穿越。建立了3 MW风力发电机仿真模型,根据相应的计算原则确定配置7.65 F的超级电容器,当电压跌落50%且故障时间一直持续,超级电容可以控制机组维持稳定运行15 s,验证了超级电容提高风电机组低电压穿越能力的有效性。  相似文献   

11.
袁野  艾利盛 《电力建设》2015,36(3):99-104
随着我国风电领域相关标准的发布,国内的双馈型风机(doubly-fed induction generator,DFIG)发电机组都已具备电网故障时不脱网的能力。其中部分风机是经过技术改造才具备低电压穿越(low voltage ride through, LVRT)能力的,因此各个厂家的风机LVRT策略多种多样,很多风机厂家的控制策略并不完善,使得风机在故障后的功率恢复速率并不能满足要求。同时某些风机的控制策略使风机在功率恢复过程中发生功率突变,若风场的大量风机都应用该程序进行LVRT,则会使得该地区的电网由于有功功率突变而导致电网电压瞬间升高,对电网造成二次冲击,使风机又处在外部电压高于标准电压的状态,而目前国内的风机还不具备高电压穿越功能,从而发生更大规模的风机脱网事件。为此提出了一种在对双馈风机进行LVRT改造时既能保证其撬棒系统不被损坏,同时又具备LVRT能力的新型精细化控制策略。  相似文献   

12.
改善基于双馈感应发电机的并网风电场暂态电压稳定性研究   总被引:14,自引:8,他引:14  
提出了改善基于双馈感应发电机的并网风电场暂态电压稳定性的措施以实现风电场的低电压穿越(low voltage ride through, LVRT)功能。目前,大部分基于双馈感应发电机的变速风电机组不具有故障情况下的暂态电压支持能力,当电网侧发生严重短路故障时,风电场的暂态电压稳定能力会影响到电网安全稳定。该文在DIgSILENT/PowerFactory中建立了具有暂态电压支持能力的变速风电机组转子侧变频器控制模型及用于故障后稳定控制的桨距角控制模型,通过包含风电场的电力系统仿真计算验证了模型的有效性及其对风电机组和电网暂态电压稳定性的贡献。仿真结果表明,当电网侧发生三相短路故障时,风电机组转子侧变频器暂态电压控制能够控制风电机组发出无功功率支持电网电压;桨距角控制能有效降低变速风电机组机械转矩,避免出现风电机组超速及电压失稳。得出结论:采用变频器暂态电压控制及桨距角控制能够改善基于双馈感应发电机的并网风电场的暂态电压稳定性,确保风电机组低电压穿越(LVRT)功能的实现及电网安全稳定。  相似文献   

13.
双馈风力发电系统的低压穿越运行与控制   总被引:16,自引:7,他引:9  
根据紧急电网规程要求,风电场须具备外部电压故障下不间断运行能力,即电网故障时风电机组应能保持与电网连接并向系统不间断供电。由于双馈感应发电机(DFIG)励磁变换器容量有限,电网故障时会产生转子过电流和变换器直流环节过电压,须实行保护和控制。讨论了外部电压骤降下DFIG风电系统的低压穿越控制策略和保护方案,并对一台1.5Mw商用DFIG风电系统进行了仿真研究。结果表明快速短接保护装置(Crowbar)的切除时刻和所用串联电阻大小对故障电网恢复和变换器保护有较大影响。配合Crowbar而采用串联电阻及改进网侧变换器控制策略的方式,可以实现DFIG成功穿越定子剩余电压为15%的电网骤降故障,且无需吸收大量无功功率,有利于电网的恢复。  相似文献   

14.
当电网电压跌落时,风电机组须维持一定时间与电网连接而不解列,并且能提供无功以支持电网电压的恢复,即具有低电压穿越能力,而双馈风电机组低电压穿越能力最弱。分析建立了双馈风力发电机组的模型,通过使用MATLAB/SIMULINK仿真,来研究它的LVRT性能,及影响它LVRT性能的因素,探讨它的改进方案。  相似文献   

15.
双馈风电机组低电压穿越特性的试验研究   总被引:4,自引:1,他引:3  
低电压穿越能力正逐渐成为大型并网风电机组的必备功能之一,要求风电机组在电网电压跌落发生时保持并网,故障消除后快速恢复正常运行。在分析双馈机组电压跌落特性的基础上,采用了转子主动式Crowbar电路和直流侧卸荷电路相结合的方法来实现双馈风电机组的低电压穿越功能,讨论了具体的低电压穿越控制策略,通过仿真验证了电路结构和控制策略的正确性。在实验室10 kW双馈机组实验平台上,采用电压跌落发生器模拟电网电压跌落故障,进行了电网电压跌落至额定电压20%时不同持续时间的测试,证实了所采用的低电压穿越控制策略的有效性。  相似文献   

16.
介绍了当今世界主流风电市场的风电并网规程,进一步研究后重点综述了风电机组故障穿越诸多问题,如低电压穿越、高电压穿越、频率穿越。还分析了三种主流风电机组故障穿越能力和电力系统之间的相互影响,汇总了三种主流风电机组低电压穿越能力的工程实现方案。最后结合多年的实际工程经验,以各国电网风电接入规程和各种风电机组故障穿越特性为线索,探讨了需要重点注意的故障穿越技术问题,并总结出了决定风电机组低电压穿越特性的12项技术要素。  相似文献   

17.
风电接入系统稳定性分析及其可视化研究   总被引:1,自引:1,他引:0  
随着我国风电的快速发展,带来了大规模风电接入系统的稳定性问题。介绍风电大量脱网对系统频率的影响,并阐述风机低电压穿越问题(LVRT)。通过对WSCC-3机9节点系统的可视化仿真,展示了电网故障期间各节点电压波动情况,定性分析了并网风机低电压穿越过程。此外,算例结果表明,基于PowerWorld软件的区域电压可视化技术,有助于调度运行人员直观、形象地掌握事故状态下的全网运行情况。  相似文献   

18.
电网电压骤升故障下双馈风力发电机变阻尼控制策略   总被引:14,自引:1,他引:13       下载免费PDF全文
双馈风力发电机在电网电压跌落情况下的不间断运行已成为当前研究热点,而电网电压骤升对双馈风力发电系统的运行也构成了威胁。为研究双馈风力发电机的高电压穿越特性及其控制策略,分析了电网电压骤升激起的双馈感应发电机的电磁过渡过程。针对不同转速和电网电压骤升幅度对系统的影响,提出一种基于变阻尼的转子励磁控制策略,减小了故障情况下...  相似文献   

19.
通过发电机控制绕组侧的励磁变换器灵活调节系统所需的励磁无功功率,定子双绕组感应电机(DWIG)风力发电系统可在宽风速范围内输出稳定的高压直流,无需增加升压变换器即可并网运行,并且系统的控制策略有助于提高系统对电压跌落等故障的穿越能力。文中通过构建并网型DWIG风力发电系统的Simulink仿真模型,对系统运行在各种功率因数状态下的跌落特性及跌落期间对电网的无功功率支持进行全面仿真。结果证明,无需增加额外的卸载单元,DWIG风力发电系统即可实现较强的低电压穿越能力,在不同功率因数下均能稳定安全运行,且能在电压跌落故障期间提供一定的无功功率支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号