首页 | 本学科首页   官方微博 | 高级检索  
检索     
共有20条相似文献,以下是第1-20项 搜索用时 140 毫秒

1.  MOSFET开关过程的研究及米勒平台振荡的抑制  
   刘长柱  王林军《电机与控制应用》,2019年第46卷第9期
   设计功率MOSFET驱动电路时需重点考虑寄生参数对电路的影响。米勒电容作为MOSFET器件的一项重要参数,在驱动电路的设计时需要重点关注。重点观察了MOSFET的开通和关断过程中栅极电压、漏源极电压和漏源极电流的变化过程,并分析了米勒电容、寄生电感等寄生参数对漏源极电压和漏源极电流的影响。分析了栅极电压在米勒平台附近产生振荡的原因,并提出了抑制措施,对功率MOSFET的驱动设计具有一定的指导意义。    

2.  半桥结构中的SiC MOSFET串扰电压建模研究  
   《中国电机工程学报》,2020年第6期
   SiC MOSFET凭借着低开关损耗、高工作频率与高工作温度点等优点,逐渐在高效率、高功率密度与高温的应用场合取代传统的硅功率器件。然而,在高速开关中带来的栅极串扰现象严重制约SiC器件的开关速度。传统的串扰抑制方法重点关注由栅极–漏极寄生电容引入的干扰电压,往往通过减小驱动回路阻抗的方式来降低串扰电压。该文基于SiC MOSFET器件的开关模态,提出考虑共源电感的分段线性化串扰电压模型。该模型基于器件数据手册及双脉冲实验提取的参数,考虑栅极–漏极电容、共源电感、体二极管反向恢复等非理想因素的影响。对比不同电压点、电流点与电阻值下实验与模型的输出结果。该模型表明,串扰电压是由器件栅极–漏极电容、共源电感与驱动回路阻抗共同作用的结果。单一降低驱动回路阻抗的方式对串扰电压的抑制效果有限。基于提出的模型,该文给出串扰电压抑制的指导方法,可直接用于SiC MOSFET驱动电路的设计。    

3.  开关电源倍流同步整流器的研究  被引次数:3
   周辉杰  何志伟《现代电子技术》,2006年第29卷第8期
   在开关电源的实际应用中,MOSFET的寄生电容、栅极电感、漏源极电感,变压器漏感以及电路布线产生的寄生参数,对电路工作状态有很大的影响。对此介绍了倍流同步整流器的工作原理和过程。并对倍流同步整流器的基本结构控制方式进行了分析比较。通过对倍流同步整流器在3种不同的信号驱动下的波形观测比较和对电路中寄生参数对电路的影响进行了仔细的研究和分析,从而得出了较好的驱动方式。    

4.  基于栅极驱动回路的SiC MOSFET开关行为调控  被引次数:1
   曾正  邵伟华  陈昊  胡博容  陈文锁  李辉  冉立  张瑜洁  秋琪《中国电机工程学报》,2018年第4期
   碳化硅(silicon carbide,SiC)金属氧化物半导体场效应晶体管(metal-oxide-semiconductor field-effect transistor,MOSFET)与硅绝缘栅双极型晶体管相比,具有更低的开关损耗,更快的开关速度。但是,其高速开关过程对寄生参数非常敏感,容易激发高频振荡和过冲,给器件和电力电子装置的高效、安全运行带来不利影响。针对栅极驱动回路对器件开关行为的作用机理,基于电感钳位双脉冲测试电路,分析了SiC MOSFET开关过程的电路模型,并利用其数学模型分析了SiC MOSFET开关行为的典型特征,分析了不同栅极电阻、栅源电容、栅极驱动电压对开关行为的调控规律。分析发现,这些调控方法在抑制振荡和过冲的同时,会降低器件的响应速度,增加开关损耗。实验结果验证了模型与分析的正确性和有效性,可为SiC MOSFET的应用研究提供有益的支撑。    

5.  基于漏极导通区特性理解MOSFET开关过程  被引次数:1
   刘松《今日电子》,2008年第11期
   本文先介绍了基于功率MOSFET的栅极电荷特性的开关过程;然后介绍了一种更直观明析的理解功率MOSFET开关过程的方法:基于功率MOSFET的导通区特性的开关过程,并详细阐述了其开关过程.开关过程中,功率MOSFET动态的经过是关断区、恒流区和可变电阻区的过程.在跨越恒流区时,功率MOSFET漏极的电流和栅极电压以跨导为正比例系列,线性增加.米勒平台区对应着最大的负载电流.可变电阻区功率MOSFET漏极减小到额定的值.    

6.  桥式电路中不同封装SiC MOSFET串扰问题分析及低栅极关断阻抗的驱动电路  
   梁美  李艳  郑琼林  赵红雁《电工技术学报》,2017年第32卷第18期
   由于SiC MOSFET开关速度较快,使得桥式电路中串扰问题更加严重,这样不仅限制了SiC MOSFET开关速度的提升,也会降低电力电子装置的可靠性。针对SiC MOSFET的非开尔文结构封装和开尔文结构封装的串扰问题分别进行分析,栅漏极结电容的充放电电流和共源寄生电感电压均会引起处于关断状态开关管的栅源极电压变化。提出一种用于抑制串扰问题的驱动电路,该驱动电路具有栅极关断阻抗低、结构简单、易于控制的特点。分析该驱动电路的工作原理,提供主要参数的计算方法。最后通过实验测试了两种结构封装SiC MOSFET的串扰问题,并且对提出的驱动电路进行了实验,验证了其正确性以及对串扰问题的抑制效果。    

7.  基于干扰动态响应机理的SiC MOSFET驱动设计  
   邵天骢  郑琼林  李志君  李虹  刘建强《电工技术学报》,2021年第36卷第20期
   目前碳化硅(SiC)MOSFET大多沿用Si MOSFET和IGBT的驱动设计方法.然而,由于SiC MOSFET相比Si器件具有更高的开关速度,因而栅极内阻、驱动回路电感和功率回路电感导致的栅源电压干扰情况也值得探索.该文分析栅源电压干扰产生的过程,进而归纳提炼出一种基于干扰动态响应机理的SiC MOSFET驱动参数标幺化设计方法.从开关结电容的等效电路出发,推导出功率回路和驱动回路的传递函数,基于驱动和功率双回路传递函数,研究揭示栅源电压的干扰动态响应机理.进而,引入标幺化的参数表达形式,以标准量化驱动参数对于栅源电压干扰传导路径的影响,提出基于干扰动态响应机理的SiC MOSFET驱动设计原则.最后,搭建双脉冲实验平台,验证该驱动设计原则的合理性.    

8.  带保护功能的功率MOSFET驱动电路  被引次数:1
   杨碧石《微特电机》,2009年第37卷第10期
   0 引言 通常功率场效管内部(栅-源极间)制作了一个保护用的齐纳二极管,由于该齐纳二极管的存在,也将使MOSFET管的栅极输入电容增大.因此,为了提高其开关速度,必须充分考虑栅极输入电容的影响,保证输入电容在开关过程中能很快充放电,因此,在设计功率MOSFET栅极驱动电路时,还必须使控制回路与功率MOSFET构成的主回路之间完全隔离.    

9.  SiC功率模块开关特性测试研究  
   《电力电子技术》,2019年第6期
   碳化硅(SiC)功率模块在开关时电压、电流变化率高,测试系统的寄生电感容易引起电压、电流振荡,使得开关特性的准确测试成为难题。这里通过研制低寄生电感的开关特性测试平台,结合不同封装的SiC功率模块,研究了栅极电阻、不同测试系统对开关性能的影响,测试系统寄生电感越大,需选用的栅极电阻越大,否则电压、电流的振荡影响开关特性测试;测试系统寄生电感越小,可选用的栅极电阻越小,其开关损耗越小。    

10.  利用附加电感实现高频功率MOSFET谐振栅极驱动  
   沈刚  王华民《电气传动》,2005年第35卷第1期
   通过在功率MOSFET栅极驱动回路增加附加电感,利用栅极电容与附加电感的能量交换实现谐振栅极驱动,从而降低驱动功率损耗.保证该电路可以在高频情况下正常运行.实验验证了该方法的正确性与实用性.    

11.  寄生电感对碳化硅MOSFET开关特性的影响  
   柯俊吉  赵志斌  魏昌俊  徐鹏  谢宗奎  杨霏《半导体技术》,2017年第42卷第3期
   相比于传统的Si IGBT功率器件而言,碳化硅MOSFET可达到更高的开关频率、更高的工作温度以及更低的功率损耗.然而,快速的暂态过程使开关性能对回路的寄生参数更加敏感.因此,为了评估寄生电感对碳化硅MOSFET开关性能的影响,基于回路电感的概念,将栅极回路寄生电感、功率回路寄生电感以及共源极寄生电感等效成3个集总电感,并且从关断过电压、开通过电流及开关损耗等3个方面,对这3个电感对SiC MOSFET开关性能的影响进行了系统的对比研究.研究表明:共源极寄生电感对开关的影响最大,功率回路寄生电感次之,而栅极回路寄生电感影响最小.最后,基于实验分析结果,为高速开关电路的布局提出了一些值得借鉴的意见.    

12.  ICL7667实现步进电机高频斩波控制  
   王永成  党源源  徐抒岩  韩诚山  于涛《光学精密工程》,2008年第16卷第11期
   为了提高小内阻步进电机驱动系统中功率MOSFET的开关速度,采用ICL7667作为功率MOSFET的驱动器来实现步进电机的高频斩波控制.对驱动电路采用的功率MOSFET的栅极电容特性、开关时间等进行了研究,发现栅极电容的充放电过程影响了功率MOSFET的开关速度,提出了提高功率MOSFET开关速度的方法.最后,采用ICL7667作为功宰MOSFET的驱动器实现了步进电机的高频斩波控制.仿真和试验结果表明:采用ICL7667的驱动电路,可以保证斩波频率为200 kHz时,功率MOSFET的漏极输出仍处于截止和深度饱和的状态,这比采用电阻分压式驱动电路其斩波频率最大为20 kHz提高了 10倍,可保证小内阻步进电机在高速斩波信号的控制下正确运行.    

13.  基于驱动电流动态调节的低过冲低损耗SiC MOSFET有源门极驱动  
   《中国电机工程学报》,2020年第18期
   与硅基功率器件相比,碳化硅(silicon carbide,SiC)MOSFET具有开关速度更快、导通损耗更低等优点,将越来越广泛的应用于高效高功率密度场合。但是,其开关特性对寄生参数非常敏感,在高速开关过程中极易产生瞬态电压电流尖峰和高频开关振荡,严重威胁Si C基变换器的可靠运行。针对这一问题,文中对SiC MOSFET的开关暂态过程进行深入分析,揭示门极驱动电流对开关过程电压电流过冲、振荡与开关损耗的影响机理。在此基础上,提出一种驱动电流分段动态调节的SiC MOSFET有源门极驱动电路,即根据开关过程不同阶段的状态反馈动态调整器件门极驱动电流。实验结果表明,所提出的方法能够在维持低开关损耗的同时,实现了对SiC MOSFET开关过程中电压电流过冲和高频振荡的有效抑制,提升SiC基电力电子装置的动态性能与运行可靠性。    

14.  如何确定功率MOSFET的适用性  
   Sungmo Young《世界电子元器件》,2006年第3期
   功率金属氧化半导体场效应晶体管(Power MOSFET)是当今电源中广泛使用的开关器件。功率MOSFET的工作频率不断提高,以减小器件尺寸和提高功率密度。这样就会增加电流变化率(di/dt),增强了寄生电感的负面作用,导致功率MOSFET源极和漏极之间产生很高的电压尖峰。这种尖峰电压在器件上电时更为严重,因为在上电瞬间变压器的初级电感几乎达到漏感的水平,同时器件的体电容还未完成充电且电感较小。幸好功率MOSFET具有一定的抗过压能力,因此无需外加成本高昂的保护电路。    

15.  SiC MOSFET开关特性及多等级栅电压驱动电路  
   乔小可  杨媛  王庆军《电力电子技术》,2019年第3期
   针对新型宽禁带功率半导体器件碳化硅(SiC)金属-氧化物半导体场效应晶体管(MOSFET),为了充分发挥其在高功率密度和高效率应用场合中的高速及低功耗特性,分析了SiC MOSFET的开关特性,提出了一种基于复杂可编程逻辑器件(CPLD)的新型多等级栅电压驱动电路(MGD)。在SiC MOSFET开关不同阶段,通过调整栅极驱动电压以改善其开关特性。与传统驱动电路(CGD)相比,提出的MGD在相同门极驱动电阻与栅源极电容前提下,能有效提高开关速度,降低电压电流尖峰、降低开关损耗。最后通过双脉冲实验,分析了栅极驱动电阻,栅源极电容对开关特性的影响,验证了MGD在改善开关特性方面具有明显的优越性。    

16.  换流回路的寄生参数对碳化硅MOSFET开关特性的影响  
   《高电压技术》,2021年第2期
   为有效评估换流回路的寄生参数对碳化硅MOSFET开关特性的影响,首先建立了考虑换流回路寄生参数的完整的碳化硅MOSFET开关暂态电路模型,该模型考虑了换流回路负载电感的寄生电容,并将换流回路的寄生电感分为二极管支路电感和其他串联电感两部分,基于所建立的模型分析了器件的开关特性。然后搭建了碳化硅MOSFET动态特性测试平台并提取了对应的等效电路计算模型,通过解析与计算模型的结合分析了换流回路各部分寄生参数对碳化硅MOSFET开关特性的影响。最后通过实验验证了分析结果的正确性。结果表明,在考虑负载电感寄生电容的情况下,换流回路中二极管支路电感与其他串联部分电感对碳化硅MOSFET开关特性的影响不同,且二极管支路电感对关断电压过冲的影响更大。在此基础上,针对电压过冲与绝缘击穿问题,对高压碳化硅MOSFET动态特性测试平台的布局优化与寄生参数设计提出建议。    

17.  基于MOSFET的串联谐振双有源桥死区振荡机理分析及抑制  
   胡钰杰  李子欣  赵聪  罗龙  李耀华《电工技术学报》,2022年第37卷第10期
   基于MOSFET的串联谐振双有源桥(DAB)变换器可同时实现所有功率器件的零电压开通(ZVS)和零电流关断(ZCS),具有效率高的优点,被广泛应用于电力电子变压器(PET)隔离DC-DC环节。然而,在采用隔离变压器的DAB中,由于MOSFET寄生电容的存在,在死区时间内器件寄生电容与隔离变压器漏感会产生高频振荡,增加了通态损耗。该文建立死区时间内串联谐振DAB的等效电路,分析死区时间内高频振荡电流幅值与关断时刻电流的数学关系。为抑制高频振荡,提出基于开关频率微调的振荡抑制方法。实验结果表明了理论分析的正确性和高频振荡抑制方法的有效性。    

18.  共源极电感对SiC MOSFET开关损耗影响的研究  
   董泽政  吴新科  盛况  张军明《电源学报》,2016年第14卷第4期
   共源极电感同时存在于功率MOSFET的功率回路和门极驱动回路中,影响器件的开关特性和开关损耗。共源极电感的影响将随着器件开关速度和开关频率的提高而显得更为严重。碳化硅(SiC)MOSFET相对于硅器件的材料优势使其可以实现更快速的开关过程,共源极电感的影响更加需要考虑。首先分析了现有功率开关损耗测量方法的优劣,然后选用一种通过测量结温升和热阻的方法来测量SiC MOSFET的开关损耗,最后搭建了一台输出功率1kW、输出电压800V的全碳化硅Boost样机,从100kHz到500kHz进行实验验证。实验结果表明,当不含共源极电感时SiC MOSFET的开通损耗、关断损耗均有所减小。    

19.  基于ICL7667实现步进电机高频斩波控制  
   王永成  徐抒岩  韩诚山《光学精密工程》,2008年第16卷第11期
   为了提高小内阻步进电机驱动系统中功率MOSFET的开关速度,采用ICL7667作为功率MOSFET的驱动器,从而实现步进电机的高频斩波控制。首先,针对电阻分压式驱动电路测试和仿真中出现的功率MOSFET的漏级输出未处于截止和深度饱和状态的问题,对所采用的功率MOSFET的栅极电容特性、开关时间等进行了研究,发现栅极电容的充放电过程影响了功率MOSFET的开关速度。接着,提出了提高功率MOSFET开关速度的方法。最后,采用ICL7667作为功率MOSFET的驱动器实现了步进电机的高频斩波控制。仿真和试验结果表明:电阻分压式驱动电路在斩波频率不大于20kHz时,功率MOSFET的漏级输出能处于截止和深度饱和的状态;采用ICL7667的驱动电路,可以保证斩波频率为200kHz时,功率MOSFET的漏级输出仍处于截止和深度饱和的状态。采用ICL7667的驱动电路,使得其斩波频率比电阻分压式驱动电路的斩波频率提高了10倍,可保证小内阻步进电机在高速斩波信号的控制下正确运行。    

20.  功率驱动芯片高速开关引起的电源振荡现象研究  
   曹允  何晓莹  徐申《固体电子学研究与进展》,2014年第3期
   以等离子显示驱动为例,详细分析了功率驱动芯片在高速开关状态下所引起的电源振荡机理。考虑板级与芯片中驱动器件的主要寄生参数,建立了振荡电路的数学分析模型,基于所建模型,重点研究了环路电阻、芯片寄生电感和负载电容对振荡的影响,提出了减小电源振荡的优化方法,并得到了试验验证。    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号