首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 265 毫秒
1.
近年来随着我国电网电压等级的升高,电网规模的扩大,地磁活动引起的电网异常现象引起了人们的关注。对于频率一般为0.1~0.001Hz的地磁感应电流,电网计算模型采用直流等效原则,即地面感应电势等效为直流电源,系统元件等效为电阻,忽略电感。但地磁感应电流频率的变化影响变压器的偏磁程度,从而影响地磁感应电流计算的精确度。采用时域场路耦合法,建立变压器模型,利用磁场模型计算动态电感,电路模型求解电流,分析不同频率下变压器动态电感和励磁电流的数值波形,确定其偏磁程度。结果表明,当中性点之间的地面感应电势(ESP)一定时,频率为0.1~0.002Hz时变压器并未饱和,GIC若按照直流计算存在不同程度的误差,频率越低误差越小;频率低于0.002Hz时变压器饱和,可按直流进行计算。  相似文献   

2.
太阳风引发地磁暴时会在电网中产生地磁感应电流(Geomagnetically Induced Currents,GIC),准直流特性的GIC会导致变压器产生直流偏磁。阐述了GIC的产生原理,根据零序磁通的磁路情况分析了不同铁芯结构变压器受GIC影响的大小程度。基于MATLAB-SIMULINK仿真软件建立了三相三柱式变压器和三相组式变压器的直流偏磁模型,通过对比两种变压器在GIC作用下的励磁电流、磁链和谐波阶次来对比分析不同铁芯结构受GIC影响的程度。仿真结果表明,零序磁通回路磁阻小的铁芯结构变压器更易受到GIC的影响,产生明显的直流偏磁,励磁电流含有各阶次谐波,对电网的安全稳定运行带来一定的影响。  相似文献   

3.
《高压电器》2021,57(4)
当前电网地磁感应电流(geomagnetically induced current,GIC)的计算值同实测值之间存在巨大误差,影响地磁暴下GIC的防护工作实施。为获取误差产生的根源,结合GIC和感应地电场的形成机理,提出潮汐地电场(tidal geoelectrical field,TGF)是造成GIC计算误差的重要影响因子。给出了TGF作用电网的可行性求解方法,并推导了GIC在地心坐标系计算中的数学表达式。最后,以甘肃兰州地区为研究对象,通过建立局部电网直流等效模型,采用数值仿真方法计算了TGF引起的电网GIC水平。与同地区其他文献计算结果对比,TGF单独作用下产生的GIC数值最大占比地磁暴期间GIC计算值的18.8%,因此后续进行GIC的求解与分析时,必须考虑TGF的影响。  相似文献   

4.
基于WGS84坐标系统建立了地磁感应电流(GIC)的计算模型,在此基础上通过MATLAB-SIMULINK仿真软件搭建出含有GIC的电网模型。基于变压器的磁化曲线和铁芯饱和特性,研究了GIC作用下的变压器直流偏磁现象。通过对励磁电流、变压器磁链、线路电流的正常情况及GIC侵扰情况下的对比分析,结果表明,GIC作用下的变压器会发生直流偏磁,产生各次谐波,使线路电流发生一定程度的畸变。最后介绍了GIC对电网的主要影响,并从空间天气预警、变压器设计、电网规划3个方面阐述了GIC的防治措施。  相似文献   

5.
为研究地磁暴产生的地磁感应电流(GIC)对变压器励磁特性的影响,以中国安徽地区的蒙城观测台所测得地磁波动数据和皖南地区大地土壤电阻率参数为基础,建立该地区交流网架模型,基于平面波法计算得到地磁暴期间地磁场和地磁感应电流(GIC)分布,并通过变压器UMEC模型,分析GIC对所分析地区变压器励磁特性的影响,利用CDEGS实现地磁场、电力系统网架与GIC侵害变压器的联合仿真,进一步确定地磁暴期间GIC计算与风险评估.结果表明:受强太阳风暴的影响,地磁暴对所分析地区交流电网造成强烈冲击影响,其电网中所感应到的GIC要比直流输电的影响大得多,同时造成变压器励磁电流的峰值增大.文中所提方法能够为电力系统中GIC的计算与其对变压器偏磁特性的影响提供参考.  相似文献   

6.
磁暴对我国特高压电网的影响研究   总被引:2,自引:0,他引:2  
随着我国长距离输电的发展,江苏、广东等地曾多次发现磁暴在电网中产生了较大幅度的地磁感应电流(geomagnetically induced current,GIC),有可能对电网造成危害。文章通过对电网GIC监测数据和地磁数据进行分析,指出除磁暴强度外,大地电性结构、电网结构与参数也是影响GIC水平的重要因素;借助磁暴产生GIC的物理模型并根据特高压电网线路电阻小、输电距离长、采用单相变压器等特点预测未来特高压系统中的GIC干扰问题将更加严重;根据2010年我国特高压规划建立了电网的等效模型,利用典型磁暴感应出地面电场的数值初步估算了各变电站的GIC水平;最后对目前研究中有待解决的关键问题进行了总结,并结合我国国情提出了解决方案。  相似文献   

7.
提出考虑土壤电流场畸变地表电位的任意结构电网地磁感应电流(geomagnetically induced current,GIC)分布计算的完整模型,计算模型通过GIC-Benchmark标准算例检验,同时对地磁感应激励下与直流接地极入地电流激励下的电网直流电流分布计算模型进行统一。基于计算模型对湖北电网GIC风险进行评估,在东西和南北方向0.05 V/km的地电场激励下,湖北电网绕组等效直流电流之和分别为472 A和366 A,湖北电网对于东西方向的地磁感应的防御能力比南北方向更为脆弱。对湖北电网在地磁感应和直流接地极入地电流双重激励下的风险进行了评估。当地电场方向为北偏西70°且宋家坝注入单极大地运行电流时,湖北电网遭受的直流偏磁危害最严重,该方向上仅0.02 V/km的地电场对湖北电网造成的直流偏磁危害即可与宋家坝接地极注入满负荷运行电流时对湖北电网造成的直流偏磁危害相当。在对高压网络进行GIC评估时,不可忽略220 k V的网络,否则会对变压器绕组中的GIC评估产生显著影响,中性点电流最大计算偏差可能超过70%。增大线路电阻、变电站接地电阻以及变压器绕组电阻,会使得系统绕组等效直流电流之和先呈指数形式减小,后呈大致线性形式减小。  相似文献   

8.
地磁感应电流对电网安全稳定运行的影响   总被引:3,自引:0,他引:3  
太阳黑子异常活动而导致的具有准直流特性的地磁感应电流(geomagnetic induced current,GIC)的峰值远远高于变压器允许承受的直流量,已引起国内外多个电网相继发生电气设备受损和电网崩溃的事故。分析了GIC产生的机制,以及GIC致使变压器出现直流偏磁的原因。文中指出通过变压器的直流偏磁,GIC可能对交流电网的设备和电网的安全稳定运行构成威胁。详细分析了不同类型高压直流输电GIC存在的可能性,指出长距离高压直流输电只有在2种运行方式下,直流线路中才会出现GIC;正常运行时,该直流GIC不会危及直流输电的运行。最后提出了开展GIC对交直流系统安全稳定运行研究工作的建议。  相似文献   

9.
电网地磁感应电流(geomagnetically induced currents,GIC)导致变压器直流偏磁,从而威胁电网的安全运行。以往的电网GIC治理方法多限于采用单一的电容或电阻直流偏磁抑制装置,对于不同装置之间的搭配使用缺乏研究。该文研究电阻限流装置与电容隔直装置相互配合进行GIC综合治理的问题。首先考虑到自耦变压器的接线特点和电网拓扑结构,引入变压器有效GIC来描述变压器直流偏磁的严重程度,提出阻、容装置配合使用的GIC治理综合优化方法,以甘肃省主网为例构建等效仿真模型,采用多值编码遗传算法优化电容电阻的安装位置,与采用单一电容或电阻的优化结果相比,能以更少的装置台数达到预期治理效果。最后讨论电网结构发生轻微变化后综合优化治理方案的稳定性,提出新增装置的生成策略,将目标电网的最大有效GIC限制在允许范围内。  相似文献   

10.
准确计算整个电网的地磁感应电流(GIC)无功扰动非常困难。针对超特高压电网广泛采用的单相自耦变压器,提出了一种基于变压器U-I曲线和铭牌参数计算变压器GIC无功损耗的方法,算法利用厂家提供的U-I曲线和铭牌参数建立ψ-i曲线解析模型,求取变压器的GIC无功扰动增量,适用于地磁暴影响评估的工程计算。算例分析结果验证了算法的有效性。  相似文献   

11.
磁暴在电网中引起的地磁感应电流(GIC)导致变压器直流偏磁,对电力系统产生不利影响。在中性点安装电容隔直装置是治理变压器直流偏磁的常用方法,但由于GIC在电网中的流通路径复杂,在某个变压器安装隔直装置时,如不经充分考虑,往往会引起相邻变压器直流偏磁更加严重,因此文中研究电容隔直装置的安装位置优化问题。考虑自耦变压器接线和电网拓扑结构,引入变压器有效GIC来描述地磁暴对变压器的影响,分析了隔直装置的安装对变压器有效GIC分布造成的变化,提出了优化方法,在保证所有变压器的有效GIC小于允许限值的条件下,以隔直装置的安装数量最少作为优化的目标,并应用遗传算法求解。以甘肃主电网为例,构建包含47个变电站、101个节点的GIC等效模型,根据约束条件与优化目标,计算了隔直装置安装的数量和位置,并与未经优化的治理方案进行比较,验证了所提方法的可行性和优越性。  相似文献   

12.
针对地磁风暴发生时系统电压降低的现象,研究了地磁感应电流引起的直流偏磁对电力系统电压的影响。基于PSCAD/EMTDC平台搭建了地磁感应电流—直流偏磁的仿真模型,并用低频正弦交流电模拟地磁感应电流,记录了变压器无功功率的需求变化和系统的电压,另外研究了地磁感应电流对发电机出力的影响,同时与单极运行直流电流对电压的影响进行对比研究。结果表明,磁感应电流会导致变压器无功需求周期性增多,系统电压周期性降低,最大下降约为10%,同时地磁感应电流会导致发电机有功出力减小、无功出力增大。而直流电流与系统电压成比例关系,最大下降为13%左右,因无功补偿装置系统电压会逐渐恢复但达不到额定电压。  相似文献   

13.
考虑到地磁感应电流(geomagnetically induced current, GIC)具有低频性,过去一直将其近似等效为高压直流输电(high voltage direct current, HVDC)诱发的不平衡电流进行研究。然而,与HVDC型直流偏磁相比,GIC型直流偏磁具有显著的随机性与时变性,因此简单地将两者完全等效处理并不合理,在特定场景下应加以区分。为此,首先,从理论上分析了两种类型直流偏磁在诱发原因及特点上的差异。其次,通过研究直流偏磁对变压器本体以及电流互感器的不利影响,进一步探究两种类型直流偏磁对电网一/二次设备的影响差异,为后续的偏磁治理提供有效参考。最后,基于PSCAD/EMTDC仿真平台搭建了等效仿真模型,并通过仿真验证了理论分析的正确性。  相似文献   

14.
严勤  李世松  叶远誉  熊茹  赵伟 《电测与仪表》2021,58(12):144-148
电流互感器作为电力系统的基本测量单元,其性能对电能计量的准确性有重要影响.随着非线性负荷和绿色能源的大量接入,供电线路电流中出现的直流分量可能严重影响电流互感器的测量准确性,甚至会造成电流互感器铁芯饱和.因此,十分必要对直流偏磁下电流互感器的测量准确性进行评估.文章基于对电流互感器电磁物理特性的分析,建立了存在直流偏磁下表征电流互感器测量特性的解析模型,推导出了电流互感器测量准确性与安匝数、铁芯尺寸、铁芯材料、二次负荷等参数之间的关系式,并对所建模型进行仿真验证得到的结果,对直流偏磁下电流互感器的测量特性进行了讨论.  相似文献   

15.
随着智能电网的快速发展,分布式新能源配电网接入是未来发展的必然趋势。文中提出一种包含Z型变压器和升压斩波电路的新型单导线交直流混合配电网拓扑,以融合交流配电网与直流配电网的优势。Z型变压器因同一相的电压相互抵消而无明显的铁芯饱和现象,可用于实现交流和直流功率的耦合与解耦。升压斩波电路用于实现直流功率的流动,并维持各节点的电压等级。建立了分布式新能源配电网接入新型拓扑的仿真模型,验证了该新型拓扑的可行性。  相似文献   

16.
磁暴在输电线路引发的地磁感应电流(GIC)频率为0.001~0.100 Hz,这种准直流的GIC将造成变压器直流偏磁饱和,引发电网保护误动作和停电事故。为了分析、研究GIC对西北750 kV电网的影响,开发研制了电网GIC监测装置。装置在官亭、兰州东750 kV变电站的应用表明,研制的装置能有效地测量电网准直流、随机性信号,并且具有数据处理量少、节约存储空间等优点。  相似文献   

17.
为了有效预防直流偏磁危害,提出交流电网主动防御直流偏磁体系,包括交流电网现阶段直流偏磁风险评估、治理以及电网扩建阶段的风险评估、优化。提出了基于等效绕组直流电流的变压器偏磁情况评价方法。以湖北电网为例,通过调整交流电网运行方式后,湖北电网各变电站的绕组等效直流电流均降为10 A以下,杨家湾站绕组等效直流电流下降62.4%,安福寺站绕组等效直流电流下降53.2%。运用遗传算法的交叉、变异模块,对湖北电网的直流偏磁措施进行优化布点,优化布点后系统绕组等效直流电流下降50.95%。运用人工蜂群优化算法,对新建变电站站址进行优化计算,使得新建变电站直流偏磁风险最小,对直流偏磁最严重的朝阳变电站站址进行重新规划后,朝阳站绕组等效直流电流下降了71.3%。  相似文献   

18.
为明确深圳变电站变压器出现间歇性噪音的成因,解决变压器噪音异常的问题,对深圳站500 kV变压器接地中性点的直流电流进行监测,通过分析表明:该变压器的噪音异常现象是由杂散电流导致的变压器直流偏磁引起。为治理变压器的直流偏磁现象,根据杂散电流入侵变压器接地中性点直流电流的特征,采用电容隔直装置对深圳站的变压器直流偏磁进行抑制;并从深圳站变压器及深圳站片区电网的角度,通过全网监测对比分析隔直装置对深圳站入侵变压器中性点直流电流的抑制效果,以及其对片区电网变压器的影响。结论表明:应根据电网的电气拓扑结构,并基于全网角度,对深圳站500 kV自耦变压器的直流偏磁进行综合优化治理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号