首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
利用波形曲率识别变压器励磁涌流的新方法   总被引:1,自引:0,他引:1  
该文提出一种基于波形曲率特征和复合形态滤波器识别励磁涌流与内部故障电流的新方法.利用变压器励磁涌流和内部故障电流波形特征的不同,对差动电流波形进行曲率计算并分析.通过复合形态滤波算法滤除信号中的各种噪声和扰动,保证了算法的可靠性.在比较励磁涌流与短路电流曲率曲线各自特点的基础上,提出一种新的变压器保护方案,该方法不受对称性涌流的影响.大量仿真试验结果表明:该方法能快速、可靠地识别励磁涌流,即使在电流互感器(CT)饱和的情况下也有很好的稳定性.  相似文献   

2.
为了正确识别变压器励磁涌流和短路电流,提出一种基于经验模态分解(Empirical mode decomposition,EMD)和支持矢量机(Support vector machine,SVM)的识别方法.该方法首先对原始电流信号进行经验模态分解,将不平稳信号分解为多个平稳的固有模态函数(Intrinsic mode function,IMF)之和,分别计算前五层IMF分量能量并组成能量特征向量;然后以此作为SVM分类器的输入参数来识别励磁涌流和短路电流.仿真结果表明,该识别方法在小样本情况下,能准确、有效地识别励磁涌流和短路电流两类电流信号,而且受噪声的影响小.  相似文献   

3.
变压器和应涌流和励磁涌流识别新判据   总被引:1,自引:0,他引:1       下载免费PDF全文
针对识别变压器和应涌流与励磁涌流这一差动保护的难题,提出一种利用瞬时频率变化率识别这两种电流的新判据。该判据对原电流信号进行经验模态分解(EMD),得到一组固有模态分量(IMF)后,对固有模态分量进行希尔伯特黄变换(HHT)得到瞬时频率。根据和应涌流和励磁涌流中含有大量高次谐波和非周期分量,而内部故障电流基本保持基频这一频率特性,将得到的瞬时频率进行微分,通过微分值的大小可判别该电流的性质。理论分析与仿真试验表明,该判据不受涌流中非周期分量的影响,不受间断角影响,并且能准确可靠地识别变压器和应涌流和励磁涌流。  相似文献   

4.
利用波形非正弦度分形估计值识别励磁涌流   总被引:1,自引:0,他引:1  
以正确鉴别变压器励磁涌流和短路电流为目的,提出一种利用波形非正弦度分形估计的电力变压器励磁涌流与内部故障电流识别方案。利用变压器励磁涌流和内部故障电流波形特征的不同,对差动电流波形进行波形非正弦度计算并分析。通过复合形态滤波算法滤除信号中的各种噪声和扰动,保证了算法的可靠性。在比较励磁涌流与短路电流波形非正弦度各自特点的基础上,提出了一种新的变压器保护方案。仿真试验结果表明:该方法能可靠识别励磁涌流与短路电流,对轻微内部故障也有较高的灵敏度。  相似文献   

5.
针对变压器差动保护存在的区分励磁涌流和内部故障电流的难题,在引入瞬时无功功率理论的基础上,提出一种依据变压器各侧三相差有功功率和差无功功率直流分量比值的变化关系来识别变压器励磁涌流和内部故障电流的新方法.该方法原理简单,易于实现,具有数据采样方便、计算量小、动作可靠等特点.该方法从能量守恒的角度及有功功率和无功功率的关系出发,揭示了变压器励磁涌流和故障状态的本质不同.对变压器各种运行状态进行了实时数字仿真(RTDS)实验,仿真实验结果表明:该方法简单可靠,识别效果显著.  相似文献   

6.
提出一种利用电流波形特征识别变压器励磁涌流和内部故障的方法,该方法综合利用变压器差电流波形在空投涌流时会呈现出尖顶波特性和间断特征,而故障时差电流波形基本为基频正弦波的差异,先计算差电流与其中所包含基频正弦波的相关度J,再进一步利用励磁涌流尖顶的凹弧特征构造一个系数k,根据J和k进一步构造一个函数J1区分变压器的励磁涌流和内部故障.动模试验结果表明该方法能够正确区分励磁涌流和故障电流,在空投变压器时能够可靠地闭锁励磁涌流;在变压器各种内部故障时能够可靠地开放保护,动作时间一般在20 ms左右,具有较高的灵敏度和可靠性能够满足现代变压器对保护动作可靠性的要求.而且该方法实现方便,计算量小,具有良好的在实际工程中应用的价值.  相似文献   

7.
针对变压器采用纵差动保护会受到励磁涌流的影响而误动作,以及励磁涌流和内部故障时的短路电流的区分问题,提出一种根据变压器两侧三相瞬时功率因数的变化关系来识别励磁涌流和内部故障的方法.该方法简单、便捷,从能量的角度进一步揭示了变压器励磁涌流与内部故障电流本质不同.  相似文献   

8.
基于瞬时功率的变压器励磁涌流和内部故障电流识别新方法   总被引:10,自引:6,他引:10  
在分析瞬时功率频谱特性的基础上,提出了一种基于瞬时功率的变压器励磁涌流和内部故障电流识别新方法。该方法主要依据变压器两侧三相差瞬时功率幅频特性中直流分量和基频分量的相对关系来识别变压器励磁涌流和内部故障电流。该方法具有传统变压器电流差动保护简便易行的特点,并从能量守恒的角度出发,进一步揭示了变压器励磁涌流与内部故障电流本质上的不同。HYBRISIM混合仿真实验结果表明该方法简单可靠、识别效果明显。  相似文献   

9.
基于最小二乘支持向量机的变压器励磁涌流识别方法研究   总被引:2,自引:0,他引:2  
纵差保护是变压器的主保护,但在变压器空载合闸或者变压器外部短路故障被切除端电压突然恢复时会产生励磁涌流,可能会导致纵差保护的误动作,这将严重影响变压器的安全可靠运行.为此提出了一种基于最小二乘支持向量机(LS-SVM)的励磁涌流鉴别方法.选择二次谐波含量和间断角作为输入向量,利用具有高斯核函数的LS-SVM建立分类模型,对励磁涌流进行识别.仿真结果表明,该方法鉴别励磁涌流和故障电流有很高的识别率.该方法为减少变压器的误动和拒动提供了一种新的思路.  相似文献   

10.
一种鉴别变压器励磁涌流和内部故障的新原理   总被引:1,自引:0,他引:1       下载免费PDF全文
提出一种利用电流波形特征识别变压器励磁涌流和内部故障的方法,该方法综合利用变压器差电流波形在空投涌流时会呈现出尖顶波特性和间断特征,而故障时差电流波形基本为基频正弦波的差异,先计算差电流与其中所包含基频正弦波的相关度J,再进一步利用励磁涌流尖顶的凹弧特征构造一个系数k,根据J和k进一步构造一个函数J1区分变压器的励磁涌流和内部故障。动模试验结果表明该方法能够正确区分励磁涌流和故障电流,在空投变压器时能够可靠地闭锁励磁涌流;在变压器各种内部故障时能够可靠地开放保护,动作时间一般在20 m s左右,具有较高的灵敏度和可靠性能够满足现代变压器对保护动作可靠性的要求。而且该方法实现方便,计算量小,具有良好的在实际工程中应用的价值。  相似文献   

11.
张翠玲  李云路 《电测与仪表》2016,53(15):101-105
当谐振接地系统发生单相接地故障后,所有馈线零序电流的暂态信号中包含大量的特性复杂的非平稳、非线性信号,在此基础上提出一种基于经验模态分解(empirical mode decomposition,EMD)和其能量变化曲线的单相接地故障选线方法。EMD方法的优势在于其强大的适应性,能通过信号自身的变化规律来对其进行分解;而能量曲线能够比幅值更好的对故障线路和非故障线路进行鉴别。首先对各条故障线路的零序电流进行EMD处理,然后取其一阶本征模态函数(Intrinsic Mode Function,IMF)并求其能量曲线,最后根据所构建的选线信心度的大小来进行故障选线。仿真与实验的结果证明了该方法有较高的可靠性与实用性。  相似文献   

12.
为了有效防止变压器区外故障电流互感器(CT)饱和引起的差动保护误动以及区内故障CT饱和引起保护拒动,提出了一种基于改进经验模态分解(EMD)和改进灰色相关度的防止变压器差动保护误动的新方法。该方法主要利用了区内、区外故障时差流波形存在差异这一特点,只需定位故障发生时刻与第一个差流极值点出现时刻,将两时刻之间的差流波形进行关于坐标原点的对称变换,得到新的差流波形。之后将新的差流波形与正弦“小波”信号叠加得到合成波形,对合成波形进行改进EMD获得其第一个本征模态函数(IMF1),然后求取合成波形与其IMF1的改进灰色相关度。由于该方法仅需提取故障发生时刻与第一个差流极值点出现时刻的差流波形,且区内、外故障时的改进灰色相关度数值相差甚远,因此该方法能够保证快速、准确地对变压器区内、外故障做出识别,从而保证区外故障CT达饱和时保护不误动;区内故障时CT达饱和时,保护不拒动。PSCAD及Matlab仿真实验验证了该方法的可行性和有效性。  相似文献   

13.
针对配电网拓扑结构日益复杂化以及线路单相接地时故障信息难以提取等问题,提出了一种基于本征模函数IMF(Intrinsic Mode Function)特征能量矩的故障信息提取方法,并利用SVM进行故障定位。该方法首先利用经验模式分解(EMD)良好的局域化特征来量化故障信息,将故障电流信号分解得到多类IMF并在时域轴上对该IMF进行积分,从而得到能量矩特征故障向量,从能量矩中选取相关系数大的作为学习样本输入SVM分类器,得到故障线路分类模型,进而完成配电网的故障定位。基于66k V线路模型的仿真实验表明,该方法仅需测量故障电流,可以准确、有效地识别故障区段,可靠性高。  相似文献   

14.
基于经验模态分解的高压断路器机械故障诊断方法   总被引:10,自引:1,他引:9  
分析高压断路器机械振动信号的特性,提出一种以改进的经验模态分解(empirical mode decomposition,EMD)能量熵和支持向量机(support vector machine,SVM)相结合的诊断高压断路器机械故障的方法,并给出了可行的诊断步骤和分析.首先利用经验模态分解方法将高压断路器的振动信号分解成一些相互独立的内禀模态函数"(intrinsic mode function,IMF),然后利用正常状态标准信号所得各固有内禀模态函数包络信号的等能量分段方式,实现对待测状态信号各IMF包络的时间轴分段,计算各待测信号IMF包络的能量熵向量,以此构造的经验模态分解能量熵向量作为支持向量机的输入向量.采用"次序二叉树"向量机分类,利用梯度法和交叉检验优化支持向量机模型参数.实验结果表明,该方法诊断高压断路器机械故障能取得良好的效果.  相似文献   

15.
自适应变压器励磁涌流判据研究   总被引:1,自引:0,他引:1       下载免费PDF全文
基于差流谐波正序分量的变压器励磁涌流判据能够有效识别励磁涌流和内部故障。为了进一步提高差动保护的励磁涌流闭锁可靠性和内部故障动作快速性,分析了变压器端电压及其基波正序分量突变量在励磁涌流和内部故障时的不同特征,由此确定了自适应控制因子Q,并将Q加入到差流谐波正序分量的励磁涌流判据中,进而提出了一种自适应变压器励磁涌流新判据。大量EMTP仿真及动模实验表明:新判据能够在励磁涌流时自动降低涌流制动定值,提高涌流的闭锁可靠性;在内部故障时自动升高涌流制动定值,提高区内故障时保护的动作速度。  相似文献   

16.
该文提出了一种感应电机转子故障诊断新方法。当感应电机转子出现断条故障时,转子绕组的不对称将会使电磁转矩谱中引入2sfs(s为转差率,fs为电网频率)谐波分量。利用砌bert-Huang变换中经验模态分解(EMD)方法对启动电磁转矩信号进行了分解,得到若干本征模态函数(IMF)。通过计算包含故障信息的IMF分量的瞬时频率,可以检测出转子断条故障。同时,根据包含故障信息的IMF的幅值可以进一步判断出转子断条根数。实验结果证明该方法是可行的。  相似文献   

17.
针对低压配电线路负载端电弧故障电压具有较强的信号奇异性波形特征,利用低压串联电弧故障实验平台,采集若干典型的低压配电线路负载端故障电弧电压信号进行分析。采用经验模态分解(empirical mode decomposition,EMD)有效地提取反映电弧故障信号局部特性的本征模态函数(intrinsic mode function,IMF)分量,经分析IMF分量的方差贡献率确定前5阶IMF用于表征各类负载电弧故障主要特征信息,提取前5阶IMF分量能量比为特征向量作为极端学习机(extreme learning machine,ELM)的输入向量,建立不同负载电弧故障识别模型。实验与仿真结果表明,基于EMD分解和ELM相结合的故障电弧诊断方法,在有效提取不同负载电弧故障特征的基础上,实现了不同负载电弧故障的识别。  相似文献   

18.
基于DCT和EMD的滚动轴承故障诊断   总被引:1,自引:0,他引:1  
根据轴承故障振动信号特点,提出了一种离散余弦变换和经验模态分解相结合的轴承振动信号故障诊断新方法。将离散时间序列经过离散余弦变换处理成对应的系数向量,在阈值处理的基础上,重构信号提高故障信号的信噪比;对重构信号进行经验模态分解,通过相关系数计算去除伪分量,并进行频谱分析。仿真信号和轴承故障信号的分析表明,该方法提高了信噪比,降低了EMD运算成本,减少了IMF的数量,保证了IMF的物理意义,成功完成微弱故障诊断。  相似文献   

19.
针对励磁涌流引起变压器纵联差动保护误动的问题,提出了一种基于小波变换和模极大值理论来辨别励磁涌流与故障电流的新依据。该方法根据励磁涌流含有大量非周期分量和波形间断角,而故障电流保持基频正弦波的特点。首先利用小波分解原始信号,再利用模极大值理论选取模极大值点,通过模极大值点之间的数值关系可以鉴别不同电流信号。经过Matlab/Simulink仿真分析,表明该方法能够准确可靠地区分励磁涌流和故障电流。  相似文献   

20.
一种快速识别变压器励磁涌流和内部故障的新方法   总被引:9,自引:3,他引:9  
基于励磁涌流波形畸变严重,会呈现出尖顶波的凹弧特征,而故障电流则基本保持基频正弦波(凸弧)特征的思想,该文提出了一种利用波形特征快速区分变压器励磁涌流和内部故障的新方法。该方法利用初始5ms内差电流的数据(5ms数据窗),将其拓展为长10ms的数据窗,然后通过最小二乘算法拟合差电流波形得到其近似表达式,再根据拟合曲线在各点处的曲率和凸凹特性来区分变压器励磁涌流和内部故障。动模实验表明:该方法能够快速地切除变压器内部故障,动作时间约为5ms,所需时间较短,识别灵敏度高,且实现方便,不受电流互感器饱和及非周期分量的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号