首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在永磁直线同步电机驱动伺服系统的迭代学习控制(ILC)过程中,针对由于每次运行时跟踪误差的累积,导致系统出现收敛速度降低甚至发散的现象,提出一种基于经验模态分解(EMD)算法的迭代学习控制方法。首先设计闭环ILC控制器,然后利用EMD算法分解ILC过程中的跟踪误差,筛选并消除其中发散的分量,保证ILC的收敛性,提高ILC的收敛速度。仿真和实验结果表明,与传统ILC相比,所提出的控制方法能够使系统的跟踪效果更好,且保证了伺服系统的输出轨迹在较少的迭代次数下快速精确地收敛到期望轨迹。  相似文献   

2.
为了实现康复电刺激系统治疗参数的个性化定制及实时调整,提出了一种基于调制中频电刺激的下肢肌力康复闭环电刺激系统。设计低频调制中频刺激电路,基于遗传算法建立了电刺激参数与膝关节角度之间的支持向量机回归预测模型,并搭建基于模糊内模控制PID的闭环反馈系统,以达到更精确稳定的参数设置效果。通过膝关节运动实验表明,被试者在无痛感的前提下更接近预期的关节运动轨迹,30组膝关节运动角度与预期值最大均方根误差为10.21°,最小均方根误差为5.48°。相比传统低频电刺激,肌电平均振幅具有20μV以上提升。本文提出的电刺激系统参数可实现因人而异,且可根据闭环反馈结果进行实时调整,该系统能有效活化肌肉、提升肌力,在肌力康复步态训练中有较好的应用前景。  相似文献   

3.
针对直驱XY平台在加工高速度和尖角轮廓时精度较差的问题,提出一种在全局任务坐标系(GTCF)中采用迭代学习控制(ILC)和互补滑模控制(CSMC)相结合的轮廓控制方法。首先,利用实际轮廓误差的一阶导数构建轮廓误差模型,并将轮廓误差和轮廓运动轨迹作为控制变量建立GTCF,使系统能够协调运行。然后,采用ILC对轮廓跟踪过程中的未建模动态进行补偿,并利用CSMC抑制直驱XY平台伺服系统中参数变化、外部扰动等不确定性因素的影响。最后,系统实验结果表明,该控制方法具有较强的鲁棒性和快速的轮廓跟踪性,能够实现更精确的控制性能,减小系统的轮廓误差,进而改进直驱XY平台伺服系统的高精度轮廓加工性能。  相似文献   

4.
二维直线电机在实际运行中存在强耦合、未知非线性等未建模动态控制问题,且易受外部干扰的影响.基于无模型自适应控制(MFAC)不依赖被控系统精确数学模型的特点及迭代学习控制(ILC)循序渐进的学习规律,提出一种改进多入多出无模型自适应控制(MIMO-MFAC)的二维直线电机迭代学习控制(ILC)复合控制方案.在无模型自适应控制输入准则函数中加入一阶差分单元,使改进多入多出(MIMO)无模型自适应反馈控制器具有很强的鲁棒性.迭代学习前馈控制器可以克服外部干扰,补偿系统非线性,前馈反馈优势互补,实现对期望输出的精度补偿,进一步减小位置跟踪误差.最后,将二维直线电机运动平台与LINKS-RT半实物仿真系统相结合,通过实验验证所提方案的有效性.  相似文献   

5.
基于迭代学习与小波滤波器的永磁直线伺服系统扰动抑制   总被引:1,自引:0,他引:1  
针对迭代学习控制(ILC)算法抑制永磁直线同步电机(PMLSM)周期性扰动时存在非周期分量影响问题,提出一种迭代学习控制算法与小波滤波器相结合的扰动抑制方法。通过重构输入误差信号,剔除非周期分量,从而使设计的PMLSM伺服系统迭代学习控制器快速收敛,减少了迭代次数。提出通过实验确定ILC中L形滤波器参数的方法。实验结果表明,与不带小波滤波器及传统PID比较,所提出的控制方法能够使系统的跟踪效果更好,且保证了在较少迭代次数下,被控系统的输出轨迹能精确地收敛到期望轨迹。  相似文献   

6.
康复步行训练机器人通过跟踪医生指定的运动轨迹,帮助患者步行训练,针对运动过程中位置和速度跟踪误差过大,影响康复者的安全问题,提出一种预测控制方法,目的是使康复步行训练机器人从任意位置出发同时实现轨迹和速度跟踪,并将跟踪误差约束在指定范围内,提高系统的安全性。通过离散化康复步行训练机器人的动力学模型,建立了具有控制增量形式的预测模型。在预测时域内,设计轨迹跟踪误差性能优化指标,并构建运动位置和速度跟踪误差约束条件,通过设计辅助运动轨迹并求解控制增量形式的二次规划问题,获得了时域内满足误差约束条件的预测控制。通过仿真和实验研究,结果表明了所提控制方法同时约束位置和速度跟踪误差的有效性和优越性。  相似文献   

7.
对于可控励磁磁悬浮直线同步电机(CEMLLSM),常规迭代学习控制(ILC)精度低、抖振大,且抗外部扰动能力差。为提高跟踪精度,设计了一种基于扩张状态观测器(ESO)的变增益自适应ILC算法。首先,研究CEMLLSM的工作原理及数学模型。其次,设计基于ESO的变增益自适应迭代学习控制器,为控制器中固定增益部分引入指数可变增益,增加自适应迭代项对控制律中的未知参数进行迭代学习,从而减小系统抖振与误差并加快系统收敛速度。通过引入ESO观测系统的外部干扰,对控制量进行补偿,进而提高系统的抗扰动能力。最后,用MATLAB对控制系统进行仿真分析,仿真结果表明该算法能够有效减小跟踪误差,并对扰动有良好的抑制作用。  相似文献   

8.
樊立萍  王喜阳 《微电机》2007,40(1):22-24
直线电机的诸多非线性因素是影响其控制精度的主要原因。迭代学习控制能充分借助历史控制信息构成当前控制输入且不依赖被控系统的详细模型。基于迭代学习控制思想,在PID控制的基础上,设计应用于直线电机运动系统的迭代学习控制器(ILC)。仿真结果表明,迭代学习控制器能够克服非线性特性对直线电机运动系统的影响,提高系统控制精度。  相似文献   

9.
迭代学习控制具有算法简单,且控制过程不需要预知被控系统模型和参数的特点。针对开关磁阻电机转矩脉动较大的问题,将迭代学习控制(ILC)引入到开关磁阻电机的转矩控制中。以一台8/6极开关磁阻电机为研究对象,建立了基于ILC的开关磁阻电机调速系统的仿真模型,构建了以TI公司TM320F2812为控制核心的基于ILC的开关磁阻电机调速系统的实验平台,并分别进行了系统的计算机仿真和实验研究,仿真和实验结果证明了基于ILC的控制方法能显著减小开关磁阻电机转矩脉动。  相似文献   

10.
针对永磁直线同步电机(PMLSM)迭代学习控制(ILC)过程中,由于扰动及时间滞后引起的系统不稳定、误差难以收敛及跟踪精度下降等问题,提出一种基于Smith预估和性能加权函数的鲁棒ILC方案。Smith预估器与ILC相结合,可在不需要PMLSM精确数学模型的情况下,减少时间滞后对系统跟踪性能的影响,避免迭代过程中由于时间滞后的累积而引起的系统不稳定。由于系统存在外部扰动、参数变化、端部效应等不确定因素,充分利用性能加权函数的信息设计反馈控制器,在满足鲁棒收敛条件情况下,可使位置误差收敛到期望值。实验结果表明,所提出的控制方案可以提高PMLSM伺服系统的位置跟踪精度,增强系统的鲁棒性。  相似文献   

11.
基于迭代学习的配料电机振幅控制   总被引:1,自引:0,他引:1  
针对具有较强重复性的工业配料称量过程,提出采用迭代学习算法对电振机的振幅进行控制。设计了电振机振幅控制的迭代学习控制器,并分析了控制算法的收敛性。该方法控制器的设计不需要系统的模型信息,利用配料过程的重复性通过学习可以实现给料速度的精确控制。仿真实验由电振机实验装置与MATLAB仿真软件平台组成,仿真结果表明,与PID控制相比ILC控制器不但可以获得较好的跟踪效果,而且还可以有效抑制负载扰动的作用,具有较强鲁棒性。该方法计算量较小、便于实现,适合工业实际控制系统的应用。  相似文献   

12.
针对相同工件的批量焊接,并且焊接轨迹相同的情况下,焊接过程具有极高的重复性。提出了基于迭代学习控制(ILC)的脉冲气体钨极氩弧焊(GTAW)焊接过程跟踪控制方法。根据GTAW焊接的动态过程模型,设计了GTAW焊接过程控制的ILC算法,并对算法的收敛性进行了证明。研究结果表明,ILC可以有效地利用焊接过程中的重复信息,经过60次迭代学习后,焊接系统输出可以较好的达到期望轨迹,并获得较高的控制精度,验证了方法的有效性。与PID控制相比ILC控制器不但可以获得较好的跟踪效果,而且还能有效抑制外部扰动的作用,具有较强的鲁棒性。  相似文献   

13.
针对智能车运动过程中轨迹跟踪精度差的问题,提出了一种基于反演控制算法的智能车运动轨迹跟踪算法。首先,建立智能车的运动学模型;误差模型和动态模型。然后,根据反演控制算法,设计出合理的分部虚拟控制量,并结合李雅普诺夫稳定性分析,设计智能车运轨迹跟踪控制律;最后,在Simulink上进行智能车轨迹跟踪控制的仿真实验。实验结果表明,设计的智能车运动轨迹跟踪算法相比于迭代学习算法或者李雅普诺夫直接法,具有更好的实时性且跟踪精度好,且满足不同车速环境下智能车稳定性的需求。  相似文献   

14.
针对柴油发电机调速系统大多采用传统PID控制,提出采用以PID作为学习律的迭代学习控制(ILC)策略,利用其具有不依赖于被控系统的精确数学建模,跟踪收敛快的特性,设计了柴油发电机调速系统控制器。在MATLAB/Simulink中建立了柴油发电机调速系统仿真模型,对3种基本工况进行了仿真研究,详细分析了ILC在柴油发电机调速控制过程中的跟踪特性,并将控制效果和传统PID控制进行了对比,从仿真结果发现,基于ILC建立的控制器不仅适用于柴油发电机调速系统,而且表现出更好的动态性能。为柴油发电机的控制提供了新途径。  相似文献   

15.
基于迭代学习与FIR滤波器的PMLSM高精密控制   总被引:1,自引:0,他引:1  
针对永磁直线同步电机(PMLSM)运行时易受端部效应、摩擦力、负载扰动、参数变化等不确定性因素的影响而难以达到高精度跟踪控制的问题,提出一种基于迭代学习与有限冲击响应(FIR)滤波器的控制方案。PMLSM伺服系统执行重复任务时,迭代学习控制(ILC)可有效地抑制重复性扰动,具有很高的控制精度,但执行非重复性任务时很难获得较高的控制精度。为了进一步改善基于ILC的PMLSM伺服系统运行迭代1次的跟踪精度,利用ILC的输出信息来设计FIR滤波器,进而用FIR滤波器来代替ILC,使控制系统达到最优的ILC,以提高系统的跟踪精度。采用滑模控制(SMC)对FIR滤波器进行补充,使位置误差快速收敛到一定的界限内,以提高系统的抗扰能力。实验结果表明,所提出的控制方案使系统具有很高的位置跟踪精度和很强的鲁棒性。  相似文献   

16.
针对执行重复任务的永磁直线同步电机(PMLSM)在迭代学习过程中易受负载扰动、参数变化等非重复性扰动的影响而难以实现高性能跟踪控制的问题,提出了一种迭代学习控制(ILC)与变论域模糊控制相结合的分段变论域模糊ILC方法。在误差较大的时间段,采用变论域模糊控制实时地改变ILC的学习增益,并智能地调整模糊控制的论域,抑制不确定性因素对系统的影响,提高控制精度;在误差较小的时间段,采用PD型ILC,使学习增益稳定,进一步减小位置误差。实验结果表明,该控制方法可以有效地加快收敛速度,提高位置跟踪精度,并增强系统的鲁棒性。  相似文献   

17.
准确、可靠的荷电状态(SOC)估计可以为电池管理系统的安全高效使用提供保障。针对锂电池SOC估计精度不足的问题,提出人工蜂群算法(ABC)和随机森林优化EKF算法(RFEKF)分别实现电池模型的参数辨识和SOC估计。在建立双极化模型的基础上,为解决在线辨识初始误差累积的问题,采用ABC算法搜索最小模型电压误差下的全局最优阻抗参数值,实现模型参数的精确辨识。在获得精确的模型参数基础上,使用随机森林(RF)对SOC后验估计误差进行在线补偿,达到弥补传统EKF算法高阶项误差的目的,进而实现SOC高精度估计。联合半实物仿真系统和电池测试平台,在EPA城市动力工况下对SOC估计算法实现快速控制原型验证。结果表明:基于ABC-RFEKF的锂电池SOC估计算法各项误差指标均低于传统SOC估计算法,平均误差在1%左右,满足实际工程需求。  相似文献   

18.
针对直驱XY平台鲁棒交叉耦合控制(CCC)系统设计迭代学习控制(ILC)器的过程中,没有充分利用鲁棒控制的有效信息增加设计复杂性的问题。依据具有不确定性的直驱系统的鲁棒性条件和ILC在L2范数下的鲁棒收敛条件,采用鲁棒反馈控制器设计过程中保证鲁棒性的性能加权函数设计单轴ILC控制器。建立了直驱XY平台的系统模型,并给出了单轴鲁棒ILC控制器和双轴变增益CCC控制器的设计方法。与传统ILC控制器设计相比,所提出的方法不但保证了系统的鲁棒性,而且简化了设计过程,提高了系统的跟踪精度和轮廓精度。仿真和实验结果验证了所提方法的正确性和有效性。  相似文献   

19.
基于ILC算法的PMSM模型参考自适应矢量控制   总被引:1,自引:0,他引:1  
永磁同步电机(PMSM)在工业控制领域应用广泛,但由于PMSM转速转矩脉动大的缘故,仍很难应用于高精度运动控制领域。考虑到机械速度传感器的稳定性及系统成本问题,采用模型参考自适应系统(MRAS)控制估计电机转速,在PMSM矢量控制MRAS基础上,结合传统比例积分(PI)控制,在速度调节环上引入一种新颖的闭环PI型迭代学习控制(ILC)算法。通过ILC算法不断学习调节电机实际转速与给定转速的差值,达到对电机q轴给定电流的在线补偿,从而抑制电机运行时的周期性转速脉动,同时可提高转速跟踪精度。结果表明,引入ILC算法后,电机转速转矩脉动均得到了有效削弱,转速跟踪精度也得到了大大的提高。  相似文献   

20.
从迭代学习控制二维本质特性出发,研究了二维系统的分段复合迭代学习控制(iterative learning control,ILC)原理。在二维系统鲁棒性分析和设计基础上,提出了基于输入和输出反馈的分段式ILC策略,解决了永磁直线同步电机(permanent magnet linear synchronous motor,PMLSM)系统中扰动的分段补偿问题。在随机扰动主导段,ILC收敛劣化,反馈控制被加强;在重复扰动主导段,ILC成为主导控制。通过永磁直线电机推力仿真实验,验证了该控制策略沿时间轴和迭代轴均能很好地抑制推力波动。在实际电机位置控制实验中,对该策略与反馈控制进行对比研究,实时结果表明该控制方法可以有效提高系统位置控制精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号