首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
模块化多电平换流器(modular multilevel converter,MMC)凭借模块化结构等优点,被广泛应用于高压大功率输电领域。MMC含有大量子模块(submodule,SM),SM的开关器件故障是影响MMC可靠性的关键问题之一。其中SM开路故障不易及时检测,威胁系统正常运行,为此提出一种基于拉依达准则的SM开路故障定位方法。首先,对SM开路故障进行故障特性分析,根据SM开路故障会引起SM电容电压的异常变化,应用拉依达准则进行判别。其次,计算同桥臂内SM电容电压的均值和3倍标准偏差来构造一个置信区间,通过判断SM电容电压是否超出置信区间且持续一定时间来检测并定位发生开路故障的SM。该方法不需要额外传感器,不用建立精确数学模型,不用手动设置经验阈值,算法较为简单。最后,在PSCAD/EMTDC中搭建三相MMC系统仿真,并在实验室搭建单相MMC实验平台对该方法进行验证。仿真和实验结果表明,基于拉依达准则的SM开路故障定位方法能够快速有效地定位出发生开路故障的SM。  相似文献   

2.
模块化多电平变流器(MMC)子模块数目较多时,系统结构复杂且发生故障概率较高。针对子模块的开路故障诊断问题,提出一种基于子模块电压分组检测的MMC子模块开路故障诊断定位方法。分析子模块故障特性,通过对比子模块组输出电压的预测值和实际值获得检测判据,根据检测判据诊断故障发生的子模块组及故障类型;改变子模块的工作状态,根据检测判据进行故障定位;定量分析分组检测时子模块电容电压的测量误差,为子模块电压分组提供依据。通过MATLAB/Simulink搭建49电平MMC仿真平台,在电容值偏移的情况下对不同类型的故障进行仿真,仿真结果表明,所提故障诊断定位方法能在减少电压传感器数量的情况下实现子模块开路故障诊断定位,提升系统的可靠性。  相似文献   

3.
为了提高模块化多电平变换器(MMC)系统的可靠性,提出了一种基于滑模观测器的MMC子模块(SM)开路故障诊断方法.首先根据MMC的运行原理设计了滑模观测器.再利用观测器估计的输出与传感器测量的输出构造残差信号,通过对残差信号的分析实现子模块开路故障的检测.然后根据故障子模块输出电压特性确定故障位置.最终,在MATLAB/Simulink中搭建单相MMC仿真模型,模拟其中的一个子模块的IGBT发生开路并进行故障诊断.结果表明提出故障诊断方法的正确性.  相似文献   

4.
模块化多电平变流器(modular multilevel converter,MMC)因其高度模块化和低谐波失真而逐渐成为最适合大功率应用的拓扑之一。当子模块(submodule,SM)发生故障时,故障桥臂中SM电容电压和开关频率将升高,这会导致MMC故障桥臂的功率损耗不平衡,从而影响MMC的寿命。文中提出一种基于变执行频率的功率损耗优化控制(variable execution frequency-based power losses optimization control,VEF-PLOC),该控制通过调整电容电压平衡控制的执行频率来调节功率器件的开关损耗,从而优化故障桥臂中功率器件的损耗。提出的VEF-PLOC能够优化SM故障下故障桥臂功率损耗,从而有效地提高MMC的寿命。最后,在时域专业工具PSCAD/EMTDC上进行仿真,并在小型MMC样机上进行实验,仿真和实验结果皆验证了提出的VEF-PLOC的有效性。  相似文献   

5.
模块化多电平换流器的子模块数量较多,增大了系统发生故障的概率,因此子模块故障的快速诊断和准确定位是保障换流器持续运行的关键。针对MMC子模块开路故障,提出了一种基于桥臂电流畸变及自适应观测的故障诊断和定位方法。通过对故障后桥臂电流的特征提取,判断出故障发生的桥臂以及开路故障的类型;然后利用自适应观测器得到子模块电容电压观测值与实际值的残差,从而实现故障子模块的快速和准确定位;最后利用Matlab/Simulink软件搭建MMC变换器仿真平台,通过对不同相、不同桥臂和不同类型的故障进行仿真,验证了所提故障诊断和定位算法的正确性与有效性。  相似文献   

6.
模块化多电平变流器(MMC)含有大量子模块(SM),及时定位开关器件发生开路故障的SM是MMC系统可靠运行的关键问题之一。这里根据故障SM和正常SM之间电容电压变化的差异性,采用基于自适应截断平均数的快速搜索与发现密度峰值聚类算法(T-CFSFDP),可有效定位MMC中的SM开路故障。所提出的故障定位方法不需要创建复杂的数学模型和手动设置经验阈值,也不需要大量的训练数据样本,可有效定位故障SM。仿真和实验结果表明,提出的基于T-CFSFDP的MMC中SM开路故障定位方法能够快速有效定位开路故障的SM。  相似文献   

7.
为了提高模块化多电平换流器(MMC)的可靠性,当故障发生后,需要迅速检测并定位子模块故障。分析了故障诊断存在的快速性问题,提出了一种快速的故障诊断方法。故障检测采用基于改进的预测模型的方法,通过比较桥臂电流预测值与测量值的差值是否大于阈值来判断故障,故障定位采用比较子模块电容电压斜率的方法来判断故障,可以快速地定位多个子模块故障,且无需外加传感器,结构简单易实现。最后,搭建了MMC仿真和实验平台,验证了该方法的可行性。  相似文献   

8.
针对不平衡网压下模块化多电平换流器(MMC)子模块电容电压波动问题,提出一种注入共模电压与环流的MMC子模块电压波动抑制策略。首先通过注入共模电压使系统工作在较高调制比状态,然后根据半桥子模块MMC的数学模型推导出注入共模电压后的桥臂功率解析式,从而减小桥臂功率波动,实现注入共模电压与环流的MMC子模块电压波动抑制。最后通过搭建的17电平MMC实验平台对所提策略进行有效验证,实验结果显示该策略可有效减少子模块电容电压波动幅值。  相似文献   

9.
模块化多电平换流器(MMC)子模块(SM)发生故障时,快速检测到故障并定位故障SM是提升MMC可靠性的关键。现有研究基于经验的阈值设置在不同运行功率间难以推广。针对于此,提出一种适用于不同运行功率的最近电平调制(NLM)策略下MMC子模块开路故障诊断策略。所提策略通过判断SM电容电压预测值与实际值间的绝对误差是否超出阈值来检测并定位故障。通过数学推导给出了设置阈值的可靠依据,并验证了当运行功率发生改变时无需重新手动设置阈值,与现有研究相比降低了阈值设置难度。此外,所提策略整合了现有策略的优点,包括无需额外硬件,计算负担小,诊断速度快(<20ms),适用于多个SM发生故障的情形等。同时,通过理论分析验证了所提策略不仅适用于NLM策略的情形,在调整SM开关函数的预测方法后可推广至其他MMC调制策略。在硬件在环平台中的实验结果验证了该策略可以在不同功率点准确、快速地诊断出两种MMC子模块开路故障。  相似文献   

10.
模块化多电平变换器(modular multilevel converters,MMC)因其结构上的诸多优点适用于高压大功率工况。在应用中,电容电压的控制一直是MMC控制的重点,测量电容电压对于系统的安全运行很有必要。随着电压和功率等级的升高,桥臂子模块和传感器数量增加,使系统复杂性提高,成本增加。为了减少传感器数量,根据无源性理论和持续充分激励条件设计MMC降维观测器,通过测量MMC的桥臂电流和桥臂级联子模块总电压,结合模块开关信号,对每个子模块电容电压进行估计,将观测器得到的电容电压估计值用于MMC系统设计,并在Simulink中进行仿真验证。仿真结果表明观测器具有良好的鲁棒性和准确性。  相似文献   

11.
模块化多电平换流器在高电压等级、大输送容量场合的应用中,各桥臂大量子模块的电压需要实时采集并维持在允许范围内,但电压传感器配置数量的增加影响了系统的经济性与可靠性。为解决以上问题,提出了一种基于电容电压预估和组电压测量的子模块电容电压测量方法。该方法对桥臂子模块进行了分组,每组仅配备一个电压传感器,从而使传感器数量得以减少。在该测量方法基础上提出了一种子模块开路故障诊断策略,通过比较电压实测值与预估值完成开路故障的快速诊断,并且对传感器设置了故障冗余,在传感器发生故障的情况下系统仍能保持稳定运行。基于PSCAD/EMTDC搭建了21电平基于模块化多电平换流器的高压直流仿真系统。仿真结果表明,所述方法具有与传统方法近似的测量精度,同时能在较短时间内诊断子模块开路故障与传感器故障。  相似文献   

12.
模块化多电平换流器(MMC)可通过改进子模块拓扑实现对直流故障电流的清除,但大多数子模块不具备电容电压自均衡能力。在全桥子模块的基础上,推导了一种兼具故障电流自清除能力和模块电容电压自均衡能力的新型子模块:移位全桥子模块(OCFBSM)。该子模块由2个全桥子模块通过移位组合构成,正常工作时根据2个电容的连接关系运行在旁路、串联和并联3种状态,可不依赖于外加均压控制自动实现模块内电容电压均衡。发生直流短路故障时,OCFBSM通过将2个电容反向接入故障回路可自动清除直流故障电流。基于MATLAB/Simulink的仿真结果验证了OCFBSM在直流故障电流清除和自均压方面的有效性,且故障闭锁后各子模块电容电压均衡,有利于MMC重启。  相似文献   

13.
直流线路接地故障是模块化多电平换流器(Modular Multilevel Converter, MMC)的主要故障类型。发生故障时,为满足直流断路器切断电流要求,应在MMC闭锁前切除故障,而MMC的闭锁时刻取决于子模块中绝缘栅双极晶体管(Insulated Gate Bipolar Transistor, IGBT)承受故障时桥臂电流的能力,因此对故障时单桥臂电流的特性分析提出了更细致具体的要求。首先介绍了真双极MMC的拓扑结构和工作原理,分析了在发生直流线路单极接地故障时闭锁前故障电流不同成分在MMC桥臂上的流通路径。然后采用复频域计算法,构建了故障时桥臂电流的数学模型,推导了交流系统电压对MMC闭锁前桥臂短路电流的影响机理。研究表明交流系统电压相角对故障时桥臂电流的幅值影响显著。最后,基于PSCAD仿真实验平台,搭建31电平单端及51电平双端MMC-HVDC,在不同电压幅值与相角取值下的仿真结果验证了该机理的正确性。  相似文献   

14.
基于深度学习理论,提出了一种基于栈式稀疏自动编码器(SSAE)的模块化五电平逆变器(MFLI)子模块开路故障诊断方法。该方法将MFLI子模块开路故障检测与定位问题转化成分类问题,首先将子模块电容电压信号组合成24通道序列信号,然后沿着24通道序列移动大小为24×40滑动窗口获得"数据带"样本,紧接着将"数据带"转化为向量输入到SSAE中进行逐层无监督特征学习,构建原始故障数据集的深层特征简明表达,最后将深层特征简明表达连接到Softmax分类器输出故障诊断结果。此外,为了提高该方法的抗噪性能,利用已添加高斯白噪声的数据对SSAE进行训练,以提高其特征表达的鲁棒性。结果表明,所提出的故障诊断方法平均准确度达到98.09%,故障平均诊断时间为31.47ms,且具有较高的鲁棒性。  相似文献   

15.
NPC三电平逆变器容错技术   总被引:1,自引:0,他引:1  
陈静  陈欢 《电气技术》2013,(12):43-46
针对大功率变频驱动系统故障,研究三电平逆变器容错控制技术.首先,基于电压空间矢量图,分析三电平逆变器对开路和短路故障的固有容错能力.然后,提出三种容错拓扑结构:开关冗余型、相冗余型和ANPC型,并简述各自控制策略和特点,为实验研究奠定理论基础.  相似文献   

16.
模块化多电平换流器(modular multilevel converter, MMC)半桥串联结构微电网系统桥臂中各发电模块通过串联方式连接,其投入和切除由半桥变流器(half-bridge converter,?HC)中绝缘栅双极型晶体管(insulated gate bipolar transistor, IGBT)的开通与关断来实现。而该系统在并网双闭环控制下,若桥臂中HC及其连接线路发生故障,会对系统的输出特性造成一定影响。为此,分析了HC中IGBT与其反并联二极管发生开路或短路故障,以及HC之间的连接线路发生开路故障时,桥臂输出电压电流、相间环流、并网电流等参数的变化情况。选取异常变化明显的参数作为特征属性,并用其构造样本数据集。另外,在系统桥臂的故障诊断中,针对采用传统支持向量机(support vector machine, SVM)时其准确率较低的问题,建立基于鲸鱼改进SVM的故障诊断模型。结合不同数据集,通过仿真实验对所建模型的有效性进行验证。结果表明:与传统SVM和BP神经网络算法相比,基于鲸鱼改进SVM的故障桥臂诊断方法准确率更高。  相似文献   

17.
针对由H桥驱动的单绕组无轴承薄片电机因功率系统开关管发生故障导致电机无法正常运行的问题,以六相单绕组无轴承薄片电机为例,分析了开关管发生开路和短路故障时H桥的工作模态以及故障对系统造成的影响。在故障分析的基础上,对电机短路电流数学模型进行了推导,提出统一的故障容错控制方法。该方法通过非故障相电流重构,补偿功率模块故障对系统造成的影响,提供电机稳定运行所需悬浮力与转矩。通过有限元分析,验证了短路电流模型的正确性及故障容错方法的有效性。以1相和2相绕组功率开关管发生开路或短路故障为例,在一台原理样机上实验验证了理论分析与仿真结论。  相似文献   

18.
低压直流母线AC-DC电力电子变压器及其短路故障穿越方法   总被引:1,自引:0,他引:1  
传统的基于半桥型模块化多电平电力电子变压器使用大量的开关器件和无源元件,限制了其功率密度和效率的提高。提出了一种组合全桥型模块化多电平换流器(MMC)和输入侧间接串联型输入串联输出并联DC-DC变换器的电力电子变压器拓扑,MMC输出等级较低的中压直流母线,可减少隔离级DC-DC模块数量,且可以实现故障时的自阻断功能。通过改变DC-DC变换器模块输入侧的串联连接方式,可有效避免中压直流端口短路时导致DC-DC变换器输入侧电容短路问题。该电力电子变压器拓扑同时具备中压和低压直流端口,且可以有效降低开关器件、无源元件、高频变压器以及DC-DC变换器模块数量,提高电力电子变压器的功率密度、效率和故障穿越能力。最后基于MATLAB/Simulink,搭建了该电力电子变压器的仿真模型,仿真结果验证了该拓扑的可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号