首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 359 毫秒
1.
An isolated ac‐dc converter has been used in various applications, such as power supply and as a battery charger for electric vehicle. In conventional converters, a loss in each conversion stage can be reduced by applying a soft switching method. However, a conventional converter has many conversion stages including the rectifier stage, power factor correction, and dc/dc converter stages; thus, it is difficult to reduce the total converter loss and size. In this paper, we propose a novel isolated‐type ac‐dc converter with only one conversion stage; it can realize a zero‐voltage switching operation in all switching devices.  相似文献   

2.
This paper presents a novel prototype of a single‐stage zero voltage soft‐switching pulse‐width modulation ‐controlled ac‐ac converter with a silicon carbide (SiC)‐MOSFET/SiC‐SBD power module for high‐frequency (HF) induction heating (IH) applications. The newly developed ac‐ac converter can achieve higher efficiency than a Si‐IGBT/Si‐PN diode power module‐based prototype due to a low ON‐resistance of SiC‐MOSFET and a low forward voltage of SiC‐SBD under the condition of HF switching. The performances of the new prototype converter are evaluated by experiment with a single‐phase IH utensil of ferromagnetic stainless metal, after which the high‐efficiency and low switching noise characteristics due to the all SiC power module are actually demonstrated.  相似文献   

3.
This paper presents a novel input current shaper based on a quasi‐active power factor correction (PFC) scheme. In this method, high power factor and low harmonic content are achieved by providing an auxiliary PFC circuit with a driving voltage which is derived from a third winding of the transformer of a cascaded dc/dc flyback converter. It eliminates the use of active switch and control circuit for PFC. The auxiliary winding provides a controlled voltage‐boost function for bulk capacitor without inducing a dead angle in the line current. Since the dc/dc converter operates at high switching frequency, the driving voltage is also of high switching frequency, which results in reducing the size of the magnetic components. Operating principles, analysis and experimental results of the proposed method are presented. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Power electronics is a major candidate in the ongoing research of electrical power grids because they can provide better control with more information (voltage ratio, efficiency, power flow direction, etc.) than the all‐passive solutions such as transformers and so forth. Power electronic transformer has the possibility to replace the conventional one by ac/ac matrix converter with high‐frequency compact electronic transformers. In this work, a dynamic model of matrix converter is studied and issues such as efficiency, voltage ratio limitation, and transient behavior are discussed and the equivalent numerical calculations are presented. Moreover, an experimental converter is built to validate the numerical results and also to describe the switching frequency impact on the operation. It is concluded that the control creates voltage ratio saturation and high‐switching frequency results in lower efficiency values. On the other hand, efficiency can be increased by using resonances of the circuit, which can also provide higher operating frequencies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
A new single‐stage‐isolated ac–dc converter that can guarantee both high efficiency and high power factor is proposed. It is based on a new dc–dc topology that has prominent conversion ratio similar to that of boost topology so that it is adequate to deal with the universal ac input. In addition, since it utilizes the transformer more than others based on the general flyback topology, the size of whole power system can be reduced due to the reduced transformer. Moreover, the voltage stresses on the secondary rectifiers can be clamped to the output voltage by adopting the capacitive output filter and clamp diode, and the turn‐off loss in the main switch can be reduced by utilizing the resonance. Furthermore, since this converter operates at the boundary conduction mode, the line input current can be shaped as the waveform of a line voltage automatically and the quasi‐resonant zero‐voltage switching can be obtained. Consequently, it features higher efficiency, lower voltage stress, and smaller sized transformer than other topologies. A 100 W prototype has been built and tested as the validation of the proposed topology. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents a high step‐up soft switched dc–dc converter having the feature of current ripple cancelation in the input stage that is specialized for power conditioning of fuel cell systems. The converter comprises a special half‐bridge converter and a rectifier stage based upon the voltage‐doubler circuit, in which the coupled‐inductor technology is amalgamated with switched‐capacitor circuit. The input current with no ripple is the principal characteristics of this topology that is achieved by utilizing a small coupled inductor. In addition, the low clamped voltage stress across both power switches and output diodes is another advantage of the proposed converter, which allows employing the metal–oxide–semiconductor field‐effect transistors with minuscule on‐state resistance and diodes with lower forward voltage‐drop, and thereby, the semiconductors' conduction losses diminish considerably. The inherent nature of this topology handles the switching scheme based on the asymmetrical pulse width modulation in order for switches to establish the zero voltage switching, leading to lower switching losses. Besides, because of the absence of the reverse‐recovery phenomenon, all diodes turn off with zero current switching. At last, a 250‐W laboratory prototype with the input voltage 24 V and output voltage 380 V is implemented to verify the especial features of the proposed converter. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, a new soft switching direct current (DC)–DC converter with low circulating current, wide zero voltage switching range, and reduced output inductor is presented for electric vehicle or plug‐in hybrid electric vehicle battery charger application. The proposed high‐frequency link DC–DC converter includes two resonant circuits and one full‐bridge phase‐shift pulse‐width modulation circuit with shared power switches in leading and lagging legs. Series resonant converters are operated at fixed switching frequency to extend the zero voltage switching range of power switches. Passive snubber circuit using one clamp capacitor and two rectifier diodes at the secondary side is adopted to reduce the primary current of full‐bridge converter to zero during the freewheeling interval. Hence, the circulating current on the primary side is eliminated in the proposed converter. In the same time, the voltage across the output inductor is also decreased so that the output inductance can be reduced compared with the output inductance in conventional full‐bridge converter. Finally, experiments are presented for a 1.33‐kW prototype circuit converting 380 V input to an output voltage of 300–420 V/3.5 A for battery charger applications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, a two‐switch high‐frequency flyback transformer‐type zero voltage soft‐switching PWM DC‐DC converter using IGBTs is proposed. Effective applications for this power converter can be found in auxiliary power supplies of rolling stock transportation and electric vehicles. This power converter is basically composed of two active power switches and a flyback high‐frequency transformer. In addition to these, two passive lossless snubbers with power regeneration loops for energy recovery, consisting of a three‐winding auxiliary high‐frequency transformer, auxiliary capacitors and diodes are introduced to achieve zero voltage soft switching from light to full load conditions. Furthermore, this power converter has some advantages such as low cost circuit configuration, simple control scheme, and high efficiency. Its operating principle is described and to determine circuit parameters, some practical design considerations are discussed. The effectiveness of the proposed power converter is evaluated and compared with the hard switching PWM DC‐DC converter from an experimental point of view, and the comparative electromagnetic conduction and radiation noise characteristics of both DC‐DC power converter circuits are also depicted. © 2005 Wiley Periodicals, Inc. Electr Eng Jpn, 152(3): 74–81, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20081  相似文献   

9.
In this paper, a new multiport zero voltage switching dc‐dc converter is proposed. Multiport dc‐dc converters are widely applicable in hybrid energy generating systems to provide substantial power to sensitive loads. The proposed topology can operate in 3 operational modes of boost, buck, and buck‐boost. Moreover, it has zero voltage switching operation for all switches and has the ability to eliminate the input current ripple; also, at low voltage side, the input sources can be extended. In addition, it has the ability of interfacing 3 different voltages only by using 3 switches. In this paper, the proposed topology is analyzed theoretically for all operating modes; besides, the voltage and current equations of all components are calculated. Furthermore, the required soft switching and zero input currents ripple conditions are analyzed. Finally, to demonstrate the accurate performance of the proposed converter, the Power System Computer Aided Design(PSCAD)/Electro Magnetic Transient Design and Control(EMTDC) simulation and experimental results are extracted and presented.  相似文献   

10.
Electric energy storage systems are very important as one of the solutions to global warming. Step‐up/step‐down characteristics are required for electric energy storage systems. In addition, such systems must have high efficiency, low cost, and small scale. Therefore, the authors proposed a single‐phase step‐up/step‐down bidirectional converter with voltage‐fed and current‐fed hybrid‐type operation. The proposed converter consists of a two‐quadrant dc–dc converter and a single‐phase voltage‐fed converter. The circuit has several advantages such as low switching loss, use of very small capacitance, and so on. In this paper, the authors compare a comparison of the switching losses with a simple analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号