首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
氧化锌线路限压器雷电放电电流计算   总被引:3,自引:1,他引:3  
从大量的分析计算中,得出了各电压等级下不同类型杆塔所装设线路限压器在雷击杆塔时经限压器的放电电流的影响因素和不同电压等级下放电电流波形的波头和波长时间,同时用雷绕击几何击距模型分析了绕击时流经限压器的放电电流。  相似文献   

2.
采用避雷器防止10kV架空绝缘导线雷击断线   总被引:9,自引:0,他引:9  
陈年彬 《中国电力》2003,36(Z1):39-42
在绝缘导线应用于配电线路的建设中,10 kV架空线路雷击断线事故是影响安全供电的大问题.通过分析架空绝缘导线雷击断线的机理,介绍安装线路型金属氧化物避雷器可有效限制雷电过电压对配电线路的危害,减少绝缘导线配电线路的雷击断线事故,保证配电线路的安全运行,指出安装线路型避雷器这一防雷技术存在的问题,并分析了线路型避雷器的安装密度和保护效果.  相似文献   

3.
This paper reports a study of distribution line lightning performance, using computer simulations of lightning overvoltages. The results of previous investigations are extended with a detailed model of induced voltages from nearby strokes, coupled into a realistic power system model. The paper also considers the energy duty of distribution-class surge arresters exposed to direct strokes. The principal result is that widely separated pole-top arresters can effectively protect a distribution line from induced-voltage flashovers. This means that nearby lightning strokes need not be a significant lightning performance problem for most distribution lines  相似文献   

4.
雷电流全参数及避雷器状态在线监测研究   总被引:3,自引:1,他引:2  
周文俊  喻剑辉  陈荣  李涵  盛博杰 《高电压技术》2008,34(10):2054-2058
为给分析判断雷击线路杆塔号、雷击形式及实现快速定位提供充分的依据,研究了一种雷击输电线路和避雷针的雷电流全参数在线监测系统,采用罗氏电流传感器和前置机,配合GPRS公共平台远端传输接收数据,首次得到了雷击杆塔的电流波形、幅值、极性和雷击点位置。此外,还研究了线路用带间隙避雷器的运行寿命和配网避雷器运行状态的在线监测指示器,其中采用大电流通过次数的计数方法以确定带间隙避雷器的剩余寿命,设计的状态指示器的起始动作电流<100A,大电流时能可靠动作,告警和吊牌复位机构满足可靠性要求。配网避雷器采用阻性电流分量作为检测对象,当检测到的阻性电流达到设定阈值时,装置将自动发出双重故障指示。在多个变电站实际运行的结果表明:该装置动作可靠、标识明确、使用方便,减少了检修和停电导致的经济损失,提高了配电网的供电可靠性。  相似文献   

5.
The paper presents some problems of lightning overvoltage modeling in transmission lines with nonlinear elements.The presented results were obtained mostly for fast front transients of subsequent lightning return stroke currents.The effectiveness of numerical algorithms of nonlinear models and possibilities of their development for such transients are analyzed.Computer simulations carried out by application of EMTP show that nonlinear models of back-flashover and ZnO arresters work properly,while the implemented corona model can not be used for relatively large peak values of subsequent lightning return-stroke currents.  相似文献   

6.
The use of transmission line surge arresters to improve the lightning performance of transmission lines is becoming more common. Especially in areas with high soil resistivity and ground flash density, surge arresters constitute the most effective protection mean. In this paper a methodology for assessing the surge arrester failure rate based on the electrogeometrical model is presented. Critical currents that exceed arresters rated energy stress were estimated by the use of a simulation tool. The methodology is applied on operating Hellenic transmission lines of 150 kV. Several case studies are analyzed by installing surge arresters on different intervals, in relation to the region's tower footing resistance and the ground flash density. The obtained results are compared with real records of outage rate showing the effectiveness of the surge arresters in the reduction of the recorded failure rate. The presented methodology can be proved valuable to the studies of electric power systems designers intending in a more effective lightning protection, reducing the operational costs and providing continuity of service.  相似文献   

7.
The authors compare the reliability of metal oxide and silicon carbide distribution arresters by examining the likelihood of failure as a result of moisture leakage and contamination, overvoltages, and lightning surges of high magnitude and long duration. It is found that metal oxide distribution arresters should be highly reliable in most applications because the arresters are far less likely than silicon carbide arresters to fail as a result of moisture ingress and contamination. Metal oxide arresters are more likely to fail as a result of system overvoltages because they conduct current in response to the overvoltages, and for this reason somewhat more care must be exercised in application to match the magnitude and time duration of system overvoltages to the temporary overvoltage capability of the arresters. Comparison of published metal oxide arrester energy absorbing capability against the energy absorbed in lightning surges that have been shown to exist indicates that the probability of failure may be high in areas of high lightning intensity. The authors suggest changes in the ANSI/IEEE C62.11 standard for metal oxide arresters to improve arrester reliability on lightning surges  相似文献   

8.
Direct lightning strokes are considered to be a main cause of damage to surge arresters on power distribution lines. Recently, lightning performance of distribution lines has been observed using still cameras, and lightning‐caused distribution outages on hilltop areas on the coast of the Sea of Japan have been investigated. This research has shown a possibility that lightning backflow current flowing from customer facilities into distribution lines causes damage to surge arresters on the distribution lines. We have investigated the lightning backflow current flowing from customer facilities into distribution lines as a cause of damage to surge arresters. The main results are as follows: (1) The electric charge of the backflow current flowing into distribution lines is more than 60% of that of the lightning stroke current. (2) If the grounding resistance of the customer's facility is not low, the failure rates of a surge arrester caused by backflow current due to winter lightning is more than 90% of that caused by direct lightning strokes. © 1999 Scripta Technica, Electr Eng Jpn, 126(3): 9–20, 1999  相似文献   

9.
Many industrial power systems have lightning exposure, requiring surge (lightning) arresters; dry-type transformers, requiring low protective levels; and high available fault currents, making the use of current-limiting fuses desirable. On occasion, current-limiting fuse arc voltages have resulted in destruction of low characteristic arresters. A traditional guideline has been to select arrester types and ratings that will not spark over on current limiting fuse maximum arc voltage?an approach that may not be entirely viable for industrial systems. A step-by-step analytical approach to the selection of surge arresters for use with current-limiting fuses is presented. The method presumes arrester sparkover and is based on determination of system energy, fuse arc voltage and arrester back voltage characteristics, and arrester energy capability.  相似文献   

10.
The primary aim of surge arresters in power distribution lines is to protect lines and equipment from the voltage induced by nearby lightning strokes. To further improve power systems, methods to protect distribution lines against direct lightning strokes are still needed. An effective measure against direct lightning strokes is to increase the number of arresters. However, if the surge current is too large, some surge arresters absorb energy in excess of their capability and may break; this leads to a line fault. To evaluate the protective effect of the surge arresters against direct lightning strokes to overhead ground wire, the authors measured both the voltage across the surge arresters and the energy absorbed by them using a full-scale model line and a 12 MV impulse generator. The results were compared with simulation results by EMTP. There have been no previous studies making a comparison of this kind.  相似文献   

11.
确定避雷针安全保护范围的一种新方法   总被引:7,自引:1,他引:7       下载免费PDF全文
郑江 《电力建设》2001,22(12):18-0
确定避雷针安全保护范围的新方法,是将避雷针的保护范围划分为安全落雷范围和安全保护范围2 部分。当被保护物在避雷针的安全保护范围之内时,落在安全落雷范围内的雷电将击中避雷针。该方法确定的避雷针保护范围明确,无绕击雷害。  相似文献   

12.
Multichamber systems for quenching the current of lightning overvoltage impulse without power accompanying current, which will allow one to apply arresters based on them to circuits with high short-circuit currents (about 30 kA), are described.  相似文献   

13.
In order to clarify the cause of lightning outages of a distribution line, simultaneous observation of lightning discharge channels and types of damage on distribution lines were carried out with still cameras from July 1993 through July 1995. High-voltage lines located in the observation area did not suffer from induced voltages due to indirect lightning strikes, even if such lightning strikes were nearby. One instance of a direct lightning strike on a distribution line was observed. The striking point was the span center of the overhead ground wire, and only a transformer fuse was blown on the high-voltage line. Damage to surge arresters was observed in the case of a lightning strike on a building located near a distribution line. The cause is thought to have been lightning current which flowed into the nearby distribution line through the damaged arresters. © 1997 Scripta Technica, Inc. Electr Eng Jpn 119(1): 17–23, 1997  相似文献   

14.
This paper analyzes lightning surge on the stator windings of wind turbine generators. The path of lightning in the wind turbines was analyzed. An equivalent circuit model for megawatt direct-driven wi...  相似文献   

15.
方雨  刘路  李景  杨斌 《电工材料》2020,(2):9-12
10 kV配电线路分布广泛,绝缘水平低,容易发生雷击事故。为了减少山西地区低压配电线路雷击故障,以山西某典型的10 kV线路为研究对象,基于ATP-EMTP仿真分析和一种改进的电气几何模型(EGM),计算该线路的雷击跳闸率,并根据风险评估标准对其进行风险评估。根据评估结果,有针对性地制定如下防雷改造措施:风险等级为B的34基杆塔下面装设冲击接地电阻;风险等级为C的14基杆塔上装设避雷器;风险等级为D的40号和102号杆塔同时装设避雷器和冲击接地电阻。  相似文献   

16.
In order to improve the operational reliability of AC railroad vehicles, ZnO surge arresters are used to protect them against overvoltages. The most serious threat to arresters installed on the roof of an AC railroad vehicle is the lightning overvoltage. When lightning strikes the mast or conductors, the distribution system can be treated as a system of multiple conductors including feeders, messenger wires, contact wires, protective wires and two tracks. The lightning impulse discharge current through the arrester and the absorbed impulse discharging energy by arrester in the actual field operation and the protective effect of arrester were analyzed by EMTP and discussed when lightning strikes the mast or distribution lines. When the arrester Is installed on the roof of a railroad vehicle, the potential difference on the primary side of high voltage transformer inside the vehicle is suppressed below 150 kV under very serious condition  相似文献   

17.
Probability distribution of surge discharging current of arresters provided a basis for conventional theory of grounding systems. In order to rationalize the grounding systems, it is necessary to grasp the statistical data of lightning surges on distribution lines caused by direct lightning strokes and indirect lightning strokes. Lightning phenomena on TEPCO's distribution lines had been continuously observed for the rationalization of lightning protection design of distribution lines. The observation had been carried out with still cameras and monitoring sensors of lightning surges. This makes it possible to discover new interesting facts that can be useful for rationalization of lightning protection design of distribution lines. Cumulative frequency distribution of conventional data is close to that of ZnO discharging current in the case of direct strokes and indirect strokes through TEPCO's observation. Moreover, to verify the cumulative current distribution in concrete poles, the authors have compared the cumulative distribution of current through ground lines with that of current through ground lines and concrete poles. The results show that the distribution of current through ground lines and concrete poles is larger than that of current through only ground lines for high currents exceeding 1 kA. This fact suggests that lightning surge current flows not only in ground lines but also in concrete poles. © 2008 Wiley Periodicals, Inc. Electr Eng Jpn, 165(2): 36–44, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20468  相似文献   

18.
Overhead ground wires and surge arresters have been installed to protect high-voltage power distribution lines and apparatus from overvoltages induced by nearby lightning strokes. The effects of surge arresters for protection of high-voltage distribution lines against direct lightning strokes have already been investigated using the digital simulation program EMTP (Electromagnetic Transients Program). With regard to the protection of low-voltage distribution lines from overvoltages induced by lightning strokes, experimental analyses using a scale model line have been reported. This paper reports on the comparison between the experimental analyses and EMTP simulation of power distribution lines, including low-voltage lines, and the validity of EMTP simulation. Furthermore, this paper analyzes the overvoltages on low-voltage power distribution lines against direct lightning strokes to overhead ground wire using the digital simulation.  相似文献   

19.
There are two major protective methods against lightning outages on overhead distribution lines. One is by use of surge arresters and the other is by an overhead ground wire. Surge arresters have rather constant effect regardless of the type of lightning outage causes. On the other hand, the effect of an overhead ground wire is quite different against the two major causes: direct lightning hit and induced overvoltages. This paper shows how to design lightning protection for overhead power distribution lines taking these characteristics into account. Copyright © 2007 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

20.
阐述了雷电流模型、配电网各元件计算模型、绝缘子串闪络机理,采用电磁暂态仿真软件ATP-EMTP 建立仿真计算模型,比较分析杆塔冲击接地电阻对线路耐雷水平的影响,以及线路避雷器不同安装方案对线路耐雷水平的改善效果。仿真计算结果表明:雷击过电压容易导致绝缘子闪络,通过安装线路避雷器、降低杆塔接地电阻有效地提高了10 kV配电线路耐雷水平,改善了线路耐受过电压的能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号