首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究不同布局等离子体激励器的电压-电流特性及对流动控制的影响规律,针对多组纳秒脉冲等离子体放电,设计了3种不同布局形式的等离子体激励器,对其放电特性以及流动分离控制能力进行了实验研究,并对其激励特性进行了唯象学仿真分析。结果表明:不同布局形式的等离子体激励器均产生了两组放电的效果,在相同激励电压下,其电流峰值基本相同,同单组激励相比,电流峰值约为其两倍;对流动控制的结果表明,纳秒脉冲等离子体激励能够有效增升减阻,不同布局形式的等离子体激励器对流动分离控制效果有很大影响,升力系数最大提高25.2%,而最小只有6.8%;仿真结果表明,纳秒脉冲等离子体激励能够产生冲击波,并且诱导出复杂的涡结构,不同布局激励器诱导的冲击波的传播速度和强度基本相同,但其诱导的涡的运动和涡量的大小不同,从而对流场产生了不同的扰动,造成了不同的流动控制效果。  相似文献   

2.
高频交流激励表面介质阻挡放电特性及其应用   总被引:1,自引:0,他引:1  
高频交流电激励表面介质阻挡放电在控制流动分离方面有重要应用,电压幅值与频率是关键的因素。为此,通过改变电压幅值及频率,获得了电流、电压波形,以及放电图像。并将研究表面介质阻挡放电特性激励器应用于S1223翼型,在风洞中进行了流动控制实验。实验表明:随电压幅值的增大,电流幅值及每mm激励器消耗功率增大,放电宽度以及放电亮度增加;频率改变几乎不影响暴露电极向植入电极一侧放电,频率增大却可以降低双侧放电强度;通过在翼型表面布置表面介质阻挡放电激励器,可以达到抑制翼型流动分离,提高翼型升力系数的效果;翼型攻角在0°~4°与10°~25°下等离子体对翼型升力系数均能起到增效作用,而且表面介质阻挡放电对流动分离的控制效果与电压幅值有关,该文实验条件下7 kV时对翼型升力系数的增效最大,可达61.8%。  相似文献   

3.
介质阻挡放电产生等离子体技术研究   总被引:7,自引:9,他引:7  
从吹出等离子体浓度高的要求出发 ,考察诸多大气等离子体发生技术后看到 ,介质阻挡放电产生等离子体是最有效且较方便的技术。在实验室中得到的放电电流曲线证实了电离区的悬浮在空气中的离子可被吹出。被吹出等离子体的浓度虽经受了扩散、复合、气流和电场迁移等因素的影响 ,使浓度随距离增加而衰减 ,但在离开电离区 15 cm远处仍测得离子数密度达 10 9量级 ,这是其它技术难以实现的  相似文献   

4.
为揭示等离子体气动激励抑制高负荷压气机叶栅流动分离的作用效果和主要影响因素,在不同流场和激励条件下开展了等离子体流动控制的实验研究,介绍介质阻挡放电等离子体的产生原理与放电图像,利用栅后压力分布分析研究叶栅内部流场结构以及等离子体激励的变化规律和主要影响因素。结果表明:等离子体气动激励抑制附面层流动分离的作用效果随气流...  相似文献   

5.
目前,等离子体激励电源通常以工频交流电作为供电输入,并且体积较大,与便携式等离子体发生装置不匹配,限制了等离子体技术的应用与推广。以此为研究背景,开展了便携式介质阻挡放电电源的设计与研究。该电源重量为200 g,体积为102 mm×57 mm×30 mm。电源主电路采用ZVS双管自激电路。通过电路仿真软件辅助设计主电路,并进行了实验测试。结果表明,当电源输入电压为3 ~12 V时,输出电压可达2 ~ 5 kV、输出频率可在20 ~ 30 kHz范围内变化,最大输出功率为60 W,功率重量比为300 W/kg,高于目前商品化高频高压等离子体电源。采用设计的电源能够成功激发沿面型介质阻挡放电(SDBD)等离子体发生器和悬浮电极介质阻挡放电(FE-DBD)柔性等离子体发生器产生冷等离子体,并对相关特性进行了实验研究,满足了大气压开放条件下空气介质阻挡放电工作电压2 ~ 20 kV、工作频率50 Hz ~ 1 MHz的要求,为介质阻挡放电电源的便携性提供了良好的技术支撑。  相似文献   

6.
等离子体气动激励的数值仿真   总被引:11,自引:6,他引:5  
梁华  李应红  吴云  武卫  马清源 《高电压技术》2009,35(5):1071-1076
为了优化等离子体气动激励,揭示它与边界层相互作用物理机制,建立了介质阻挡表面放电的数学模型。将等离子体气动激励对流体的宏观作用,等效成体积力,通过求解电势方程和电荷密度方程得到体积力,然后将体积力与Navier-Stokes方程耦合求解,得到等离子体气动激励对流体边界层的加速效应并以此研究激励电压和频率的变化对诱导速度的影响。仿真的结果与实验结果一致,表明模型具有较高的精度,有助于认识等离子体气动激励用于流动控制的机理,为等离子体流动控制技术的应用奠定基础。  相似文献   

7.
姜慧  邵涛  车学科  章程  李文峰  严萍 《高电压技术》2012,38(7):1704-1710
在大气环境条件下,以环氧为介质阻挡材料,基于单极性ns脉冲电源进行了表面介质阻挡放电实验,研究了电压幅值、电极宽度、电极间距和重复频率对放电等离子体的影响。结果表明ns脉冲表面介质阻挡放电是丝状放电,放电发生在电压脉冲的上升沿阶段;放电电流主要包括两部分脉冲,与放电丝分布的均匀性有着一定的内在关系,外加电压对放电的均匀性以及产生等离子体的长度起作用;电极宽度和间距对放电电流和产生等离子体的发光强度影响不大,电极宽度和间距越小,放电丝分布越均匀,电极宽度存在一个最优值,使得激励器的放电稳定且产生等离子体相对均匀;脉冲重复频率仅对等离子体强度起作用,对放电特性的影响较复杂,不同电极参数下这些影响与放电丝的分布状态有关。  相似文献   

8.
《高压电器》2016,(8):96-100
表面介质阻挡放电因能产生大面积均匀等离子体而被广泛研究及应用。然而多数研究致力于通过改变反应器对放电产生的等离子体参数进行优化。文中重点研究了介质表面粗糙度对沿面介质阻挡放电特性的影响,从介质表面态角度对产生的等离子体进行优化。石英玻璃作为阻挡介质在实验前经均匀机械研磨,并测量处理后的介质表面粗糙度指标Ra。实验结果发现:当放电产生的低温等离子体均匀分布于放电气隙时,表面粗糙度指标Ra为427.1 nm的介质的起始放电电压最低、平均放电功率最大、放电产生等离子体的电子激发温度最高。介质表面经不同程度研磨处理,能够有效改变表面介质阻挡放电产生的等离子体参数。在所制备的样品中,粗糙度指标Ra为427.1 nm的介质产生的等离子体参数相对更优。  相似文献   

9.
NO在等离子体中氧化分解特性研究   总被引:2,自引:0,他引:2  
采用非热等离子体方法分解去除烟气中的NO,在高能电子的作用下将NO分解成无毒无害的N2。试验结果表明,非热等离子体技术能有效地促进NO的分解。等离子体输入功率为42W,温度为25℃,NO体积比为500μL/L,O2体积为3%,其余为N2;在流速为200mL/min条件下,NO的去除率达到了99%;随着输入功率的增加,NO去除率逐渐增大,流速和进口NO浓度对NO的去除率影响不大;O2浓度对NO的分解反应有一定的抑制作用,在O2浓度为1%~5%范围时,NO的去除率均可达92%以上。  相似文献   

10.
研制了大功率介质阻挡等离子体发生电源系统,电源系统采用介质阻挡放电串联谐振和谐振电流过零电子开关软关断等技术。通过一系列实验室和现场工程试验,获得了谐振电流过零、启动过程、变负载自适应运行等电源运行特性和稳定工作条件。进行了输出功率20—30kW长期工业运行、最大输出功率约80kW的工业试验,工作功率冗容达到100kW级水平,电源工作状态稳定,运行安全可靠,实现适用介质阻挡放电的百千瓦级电源的工业应用。  相似文献   

11.
文中基于溶胶—凝胶法制备单面负载TiO2薄膜的石英介质板,并采用NaOH液体电极,构建了光催化协同的气液两相介质阻挡放电系统,研究了 0.2~1.4 mol/L NaOH溶液作用下,气液两相DBD的放电特性与NO处理率的变化及反应机理.研究发现,DBD中产生的337.1~394.1 nm紫外辐射可有效激发TiO2,产生...  相似文献   

12.
沿面介质阻挡放电(surface dielectric barrier discharge,SDBD)等离子体产生技术由于放电空间受限制较小,结构简单,动态响应快,在空气动力学、生物医学以及环境保护等领域有着广阔的应用前景,是近年来的研究热点。为了使读者全面和深入地了解SDBD特性及其研究进展,根据国内外研究者所取得的研究成果综述了SDBD等离子体的研究现状,并对未来发展进行展望。首先介绍了目前SDBD等离子体特性常用的诊断方法,进而评述了SDBD等离子体的实验研究和数值仿真研究进展,并给出了SDBD等离子体在流动控制、风力发电以及生物医学中的应用。重点论述了沿面介质阻挡等离子体的放电特性、影响因素及其优化。结果表明SDBD应用前景广阔,未来需要建立多时间、空间尺度的参数测试与模拟方法,探讨等离子体的化学反应动力学过程,研究流速、海拔、气压、湿度等复杂的外界条件下对SDBD等离子体特性的影响,揭示其在不同领域的作用机制,提升作用效果。  相似文献   

13.
《高压电器》2013,(11):25-30
笔者研究了大气压下介质阻挡放电的产生及其发射光谱特性。放电施加正弦激励,频率和幅值分别是520 kHz和020 kHz和020 kV。通过高频数字示波器测量放电的电流电压。光谱特性通过发射光谱仪测量。光谱仪测量范围为20020 kV。通过高频数字示波器测量放电的电流电压。光谱特性通过发射光谱仪测量。光谱仪测量范围为2001 100 nm,通过光谱分析以确定大气压下等离子射流的影响因素。结果表明:施加电压幅值是其首要影响因素,其次是频率;气体流速的影响因气体成分的不同而不同;纯Ar大气压等离子射流只能观察到活性例子Ar而没有Ar2,Ar+2或Ar+的光谱。  相似文献   

14.
等离子体表面处理与大气压下的辉光放电   总被引:9,自引:3,他引:6  
与传统的方法相比,等离子体处理的高效、无毒、节能特性使得它在表面处理和灭菌消毒方面有着很好的应用前景,在上述工业领域,“经典”的大气压放电诸如电晕放电、介质阻挡放电以及电弧放电都不适用。然而,尽管低气压下的辉光放电已得到了很好的发展,大气压下辉光放电的实现还存在一些困难。目前,对大气压下辉光放电物理过程的探索集中在其物理机制、图像捕获以及大气压下空气中辉光放电的实现方面。  相似文献   

15.
王辉  方志  孙岩洲  邱毓昌 《高压电器》2006,42(2):128-130
实验研究和比较了管-管电极DBD和线-管电极 DBCD的放电特性,并从放电机理角度分析了它们放电特性不同的原因。电压-电流波形图、电压-电荷李萨育图形测量和发光图像拍摄的结果表明:线-管电极DBCD相对均匀、稳定,不同于管-管电极DBD明显的丝状流注放电的形式; 在相同的外加电压下,线-管电极DBCD比管-管电极DBD 具有更高的能量效率。  相似文献   

16.
介质阻挡放电等离子体增强引擎燃烧技术的初步研究   总被引:8,自引:5,他引:3  
非平衡等离子体技术在增强引擎燃烧效率,降低废气排放方面有着巨大的应用潜力,而介质阻挡放电是获得较大体积和较均匀分布非平衡等离子体一种有效方式。为此,详细论述了非平衡等离子体对燃料或助燃气活化作用的基本原理。基于管管结构介质阻挡放电的特点,提出了增强引擎燃烧效率的非平衡等离子体发生器主体结构方案,从理论上阐明了设计方案的可行性。以此方案设计了等离子体发生器,并开展了丙烷燃烧实验,结果表明非平衡等离子体在很大程度上能够改善有机燃料的燃烧状况,使之燃烧得更加充分,有效地验证了非平衡等离子体增强燃烧技术应用于提高引擎燃烧效率的可行性。  相似文献   

17.
非平衡等离子体技术处理甲苯的实验研究   总被引:1,自引:3,他引:1  
为了进行平衡等离子技术处理挥发性有机物(VOCs)的实验研究,采用电晕放电与介质阻挡放电相结合的放电形式处理甲苯(C7H8)废气,以此探讨电压、内电极直径及不同电介质条件对C7H8去除效率η的影响,并对放电过程的放电参量进行了测量。结果表明,电压的提高有利于C7H8的去除,电压较低时细电极反应器对C7H8的η要比粗电极高,但随着电压的上升,粗电极效率比细电极要高;陶瓷反应器对C7H8的去除效果要优于有机玻璃反应器;在反应器内填充电介质有利于C7H8的去除,填有陶瓷拉西环填料的反应器对C7H8的去除效果要优于无电介质的空管反应器;利用电压—电荷利萨如图形法测得的反应过程放电功率表明:等离子法处理VOCs能耗低,放电功率的提高对C7H8的去除有利。  相似文献   

18.
等离子体流动控制扩大压气机稳定性对等离子体激励器的诱导气流速度提出了更高的要求。进行了新型布局介质阻挡放电等离子体激励器的放电特性与诱导流动特性研究,实验研究不同放电电压和占空比对激励器诱导气流速度的影响,并与传统布局激励器进行了对比分析,探讨其在压气机扩稳实验上应用的可能性。结果表明:相对于传统布局等离子体激励器一个放电周期内有一次"强"放电和一次"弱"放电,新型布局等离子体激励器有两次"强"放电;放电频率为15k Hz时,新型布局激励器的诱导气流速度在较低电压下比传统布局激励器小,在较高电压下比传统布局激励器大,最大速度能达到4.7m/s,因此在高电压下能够更好地抑制压气机叶顶泄露流或泄露涡的流动;两种激励器产生的射流都为紊流,随电压增高诱导气流紊流度增大,且新型布局激励器在高电压下紊流度更大,能更好地促进压气机主流与附面层之间的掺混;固定放电电压和放电频率,两种激励器的诱导气流速度均随着占空比增大而线性增大。  相似文献   

19.
王辉  方志  邱毓昌 《高压电器》2004,40(5):321-323
通过电压-电流波形和电压-电荷李萨育图的测量,研究了空气中多针-平板电极介质阻挡放电特性,比较了这种放电和平板-平板电极介质阻挡放电的区别,并通过接触角测量比较了这两种形式放电对聚四氟乙烯(PTFE)进行表面改性的效果。结果表明:在相同的条件下,与平板-平板电极介质阻挡放电相比,多针-平板电极介质阻挡放电空间能产生更多的活性粒子;用这种放电对PTFE进行表面改性,能在更短的时间内获得和平板-平板电极介质阻挡放电相同的效果。  相似文献   

20.
双环电极大气压氦气等离子体射流的特性及其影响因素   总被引:1,自引:0,他引:1  
侯世英  罗书豪  刘坤  曾鹏  肖旭  张闯 《高电压技术》2013,39(7):1569-1576
大气压等离子体射流(APPJ)具有极强的应用前景,近年来在国际上引起了重大关注,成为气体放电领域的重要研究课题。为了进一步掌握其射流特性及影响因素,设计并制作了外表面双环电极氦气等离子体射流装置,通过实验研究了电极宽度、电极与喷口距离对射流功率及射流长度的影响,并在实验的基础上,分析了放电的发展过程以及各现象的物理机理。实验结果表明:随着外加电压的不断升高,APPJ半周期内的放电电流脉冲个数从1个逐步升至2个、3个,随后放电电流出现不规则丝状,直至2个电极间沿外表面击穿;增大高压电极的宽度或缩短高压电极离喷口的距离,都有利于APPJ放电功率的提升;2个电极间距越大、高压电极离喷口越远,最大射流长度越长,而初始的射流长度由高压电极宽度决定;随着氦气流量的增加,APPJ的射流长度先增长,然后下降,最终趋于平稳,在射流长度的下降阶段会出现长度多波峰现象。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号