首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 515 毫秒
1.
用谐波分析法测量介质损耗因数时, 数据采样不同步所引起的频谱泄漏会造成测量误差.为抑制这种误差,本文提出了一种新算法--卷积窗加权算法.该算法的特点是:①实现简单且精度高,无须同步采样措施, 在正常的电网频率波动范围内, 只需用三阶卷积窗对三个额定周期的采样信号加权便可将频谱泄漏引起的测量误差减少到可以忽略的程度;②运算量少,每次测量所需乘法次数和加法次数仅约为采样点数的两倍,比FFT所需的计算量小得多,且点数不受限制.  相似文献   

2.
基于三角自卷积窗的介损角高精度测量算法   总被引:1,自引:0,他引:1  
采用快速傅里叶变换(FFT)进行介损角测量时,非同步采样所引起的频谱泄漏造成介损角测量误差较大.为减小这类误差,本文提出了一种基于三角自卷积窗的插值FFT介损角测量方法.三角自卷积窗旁瓣下降快,能有效减少频谱泄漏对介损角测量的影响.采用三角自卷积窗对电压、电流信号进行加权,再运用插值FFT算法求解信号相位参数,可得到较高精度的介损角测量值.对基波频率波动、介损真值变化和谐波注入比例变化等情况下的介损角仿真实验验证了本文算法的准确性和有效性.  相似文献   

3.
电力参数非同步采样误差分析   总被引:13,自引:1,他引:13  
对用单片机测电力参数在非同步采样时的测量误差进行了分析,得出一般情况下的误差估计;针对典型算法(复化梯形算法)给出准确的误差公式,并由此得到减小误差的方法。这些结论可为交流采样技术的电力参数测量仪表在设计时进行误差分析提供参考。  相似文献   

4.
在交流电信号的测量设备中,大部分采用同步交流采样技术,它是提高交流采样性能的关键技术。针对现有减少同步误差方法的局限性,分析了采样周期与信号周期不同步以及采样时间间隔不均匀测量误差的问题,采用了累加单元减小量化误差,并结合"三点法",实时跟踪信号频率变化并调整采样周期。研究了使用梯形法计算交流信号有效值时的误差大小以及表达式,采用了改进的参数算法。仿真实验结果表明该算法能有效提高同步采样法测量有效值的精度。  相似文献   

5.
针对电力参数测量中因采样不同步引入的测量误差,通过对计算过程中的中间信号进行逐次求平均实现非同步误差的有效抑制。分别以信号的时间连续和时间离散形式研究了均值型电力参数的逐次平均测量理论,借助测量结果随时间变化的标准差分析了测量误差。基于各次递推平均过程中加权系数相等的特点,提出了均值型电力参数测量的快速递推算法。该算法计算简单、精度高,随着递推次数的增加非同步测量误差呈指数下降。对含有高次谐波交流电的有效值测量进行了数值模拟,验证了逐次平均理论的正确性和递推算法的有效性。  相似文献   

6.
有功功率及功率因数的加权算法   总被引:14,自引:1,他引:14  
提出了一种能有效地抑制由非同步采样引起的有功功率及功率因数的测量误差的加权算法。推导出任意电压、电流信号的有功功率、功率因数随相对频偏及采样相位变化的一般公式;传统算法的有功功率、功率因数的测量误差与相对频偏成正比;而用该文所提出的三角窗加权算法。有功功率、功率因数的测量误差与相对频偏的平方成正比。该算法实现简单,精度高,当相对频偏不大时,无须专门的同步采样措施即可取得较高的测量精度。  相似文献   

7.
提出基于加窗和相位差校正的谐波测量算法,对信号以相同的采样频率作2次非整周期采样.进行加窗离散傅里叶变换DFT(Discrete Fourier Transform)后,求得的相位具有基本相同的测量误差,相减后可基本抵消。构造2个数据序列作DFT,利用其对应峰值谱线的相位差计算出校正公式.对各谐波分量的参数进行校正。该算法无需对信号进行整周期采样,可有效减少泄漏误差、抑制噪声和谐波之间的干扰.从而精确测量各谐波的频率、幅值和相位。仿真结果证明,该方法实现简单、测量精度高.适合加多种对称窗的情况,具有较好的实用价值。  相似文献   

8.
加窗FFT是目前应用最为广泛的谐波分析方法。但非同步采样时,离散频谱校正中存在计算准确度与实时性的矛盾。论文结合三角自卷积窗的频谱特性,建立了基于最小二乘法的三角自卷积窗加权电力谐波分析算法。首先利用三角自卷积窗对信号进行加权,以抑制频谱泄漏;其次,采用最小二乘法进行离散频谱校正,构造可以根据精度要求进行调节的频谱校正拟合多项式;最后,根据最小二乘拟合多项式,建立简单、易行的谐波幅值、初相角和频率计算式。非同步采样和非整数周期截断条件下,对白噪声、基波频率波动等情况的谐波参数分析仿真实验验证了算法的有效性和准确性。  相似文献   

9.
加窗和插值算法可以有效抑制快速傅里叶变换(FFT)在非同步采样和非整周期截断时产生的频谱泄露和栅栏效应,提高谐波检测精度。在比较不同Rife-Vincent窗、经典窗的频谱特性的基础上,选择五项Rife-Vincent窗做母窗,构建了五项Rife-Vincent自卷积窗的时域、频域函数,并分析五项Rife-Vincent自卷积窗的主瓣特性以及自卷积阶数对旁瓣性能的影响。建立了基于五项Rife-Vincent自卷积窗三谱线插值频谱校正算法。采用多项式拟合的方式推导了简单实用的三谱线插值修正公式。通过仿真,验证了非同步采样时,与其他加窗插值相比,该算法具有更高的计算精度。  相似文献   

10.
非同步采样条件下采用快速傅里叶变换(FFT)进行介损角测量时,频谱泄漏和栅栏效应造成的误差较大。本文提出了一种基于三角自卷积窗频谱相位差校正的介损角测量算法,介绍了其在高压电容型设备绝缘在线监测系统中的应用。三角自卷积窗具有良好的旁瓣性能,采用三角自卷积窗对信号进行加权能有效减少频谱泄漏对介损角测量的影响;基于三角自卷积窗的频谱校正算法不需求解高次方程,计算量小。在非同步采样情况下,通过对基波频率波动、采样频率变化、介损角真值变化、白噪声影响、谐波变化等情况下的介损角仿真测量实验和实际应用验证了本文算法的准确性和有效性。  相似文献   

11.
为解决10 kV配网线路高阻故障较多、间歇性接地故障较多、电弧不稳定、配电网网架结构复杂、分支线复杂、负荷随机分布等现象造成的配电网系统接地故障判别、选线、定位监测困难,采用基于TDFT非同步采样谐波测量算法的小电流接地判定算法进行故障判断、定位和隔离接地故障。站所终端DTU在硬件上采用ADSP-BF607作为主处理芯片,其具备DSP和ARM双处理架构,具有处理故障数据速度快、精度高、录波性能好等优势。基于TDFT非同步采样谐波测量算法,得出首半波小电流接地判定方法。为有效判断开关合闸瞬间的涌流,DTU采用离散傅立叶变换结果,通过加权算法变换实现抑制频谱泄漏误差。对传统算法、加窗算法和TDFT非同步采样谐波测量算法进行了比较分析。实验结果表明,基于TDFT非同步采样谐波测量的涌流和小电流接地故障算法设计在10 kV配网系统的小电流接地、隔离接地故障方面准确可靠。  相似文献   

12.
当采用交流同步采样技术进行功率测量时由于频率变化,或电压、电流通道不能完全同步等原因将造成相位偏移,从而引起测量误差。本文提出了对这种相位引起误差的一种补偿算法。通过计算机仿真计算,给出了仿真计算结果,证明能有效地提高功率测量准确度。  相似文献   

13.
加窗插值快速傅里叶变换(Fast Fourier Transform, FFT)算法因其便于在嵌入式系统实现而被广泛应用于电力系统谐波检测,可改善因非同步采样和非整周期截断造成的频谱泄漏与栅栏效应,提高FFT分析的精确度。针对目前常用的加窗插值算法存在的不足,在分析五项最大旁瓣衰减(Maximum-Sidelobe-Decay, MSD)窗频谱特性的基础上,提出一种基于五项MSD窗六谱线插值FFT的谐波与间谐波分析算法。该算法利用紧邻峰值谱线频点的六条谱线进行加权运算,充分考虑峰值频点左右对称谱线所蕴含的信息以提高分析精度。通过数据拟合求出窗函数对应的插值修正公式,简化了运算过程。仿真结果表明,五项MSD窗六谱线插值FFT算法设计实现灵活,抑制频谱泄漏效果极好。相比于其他常见的四谱线插值FFT算法,该算法具有更高的谐波、间谐波检测精度。  相似文献   

14.
在高压电气设备介质损耗角在线监测中,DFT算法用于介质损耗角(介损角)测量时,系统频率的波动所造成的非同步采样将会产生泄露效应,从而会影响介损角测量精度。文章详细地分析了DFT算法非同步采样造成的泄露效应,提出了一种基于Hanning卷积窗的DFT介质损耗角测量算法。该算法采用Hanning卷积窗对电流和电压信号进行加权,利用频谱相位差校正法进行频谱校正以获得基波相位,根据电流与电压的基波相位差计算出介损角。通过仿真给出了该算法在电压频率波动和白噪声变化时计算所得介损角的变化情况,通过分析验证了该算法的有效性。  相似文献   

15.
针对传统单峰谱插值谐波测量算法在非同步采样时由于频谱泄漏造成测量精度不足的问题,提出一种基于频率补偿的改进算法,并且分析传统插值算法的测量误差,改进了修正公式。该算法通过三个步骤实现,第一,基于汉宁窗插值校正频率,然后利用相对频偏进行频率补偿得到准同步化序列。第二,采用准同步化序列基于汉宁窗再次插值校正频率,将两次计算得到的相对频偏相加用于修正频率,进而减轻频谱泄漏的影响。最后,为了提高幅值和相位的测量精度,利用准同步化序列基于平顶窗直接估计,无需推导反演公式。仿真实验结果表明,该算法的测量精度相比于传统的单峰谱插值算法提升显著,在噪声环境下相比于四谱线插值、相位差算法,该算法具有更高的精度和抗噪性能,验证了所提出算法的有效性和准确性。  相似文献   

16.
非同步采样造成的频谱泄漏是相位差测量误差的主要来源,尤其针对于频率宽范围偏移时,采用传统相位差法很可能造成测量失败。文中提出一种基于传统相位差的改进算法,改进算法分为两个步骤:第一,通过分析加窗信号频谱,将频谱表达式进行多项式变换从而加快旁瓣衰减速度,进一步减轻频谱泄漏和各谱线之间的干扰;第二,通过估计电网基波频率偏移范围确定待测信号采样点数,对采样序列采用截取点数不同的前后两次相位差法,第二次相位差法的截取点数由第一次相位差法估计的基波频率决定,减小了非同步采样带来的频谱泄漏。分别在基波频率稳定、基波频率宽范围偏移以及含有噪声干扰的情况下进行仿真验证。仿真结果表明,改进算法的电参数测量精度较传统相位差法有大幅度的提升,采样窗长满足IEC标准规定窗长。  相似文献   

17.
为了减小因非同步采样和非整数次周期截断造成的影响,提高电力系统谐波分析的精度,本文简述了一种基于DSP的电力系统谐波分析装置的总体结构.在讨论了非同步采样造成的栅栏效应误差之后,提出了同步采样的实现方法.为减小频谱泄露的影响,采用加窗双峰谱线插值的FFT算法分析电力系统谐波,并对算法的实现进行了详细的描述,仿真结果显示...  相似文献   

18.
在非同步采样和非整数周期截断时,采用快速傅里叶变换(Fast Fourier Transform, FFT)进行电力谐波分析时容易造成频谱泄露和栅栏效应,加窗插值可有效解决频谱泄露和栅栏效应问题。在分析了纳托尔窗的频谱特性的基础上,推理得出4项5阶纳托尔窗函数,通过自卷积运算得到纳托尔自卷积窗函数,并推导出四谱线插值校正公式。基于全相位傅里叶变换(all-phase FFT, apFFT)的相位不变性,利用理论频点附近的主谱线和旁谱线幅值的比值,推导出基于纳托尔双窗和ap FFT双谱线插值频谱校正分析法。由此提出了加窗插值FFT用于频率和幅值的检测,apFFT用于相位检测的新型组合算法。仿真结果表明所提新型组合算法在谐波检测时精度更高,抑制频谱泄露能力更强。  相似文献   

19.
电网中存在的大量谐波严重影响着电力系统的安全稳定运行,快速傅里叶变换(Fast Fourier Transform,FFT)算法被广泛应用于电网谐波的检测,由于存在频谱泄漏和栅栏效应导致谐波参数检测的误差较大,通过加窗函数和插值算法可以提高FFT算法的精度。对窗函数进行自乘和卷积运算可以改善旁瓣性能,以Blackman窗作为母窗,进行自乘和卷积运算,提出了Blackman自乘-卷积窗,该窗函数具有较优的主瓣和旁瓣性能。结合三谱线插值算法,推导出频率、幅值、相位的插值修正公式。采用Blackman自乘-卷积窗和其他余弦窗对含弱幅值信号的复杂信号进行对比仿真,验证了Blackman自乘-卷积窗三谱线插值算法在检测弱幅值信号时依然具有很高的精度,对含白噪声的信号进行仿真,验证了该算法对谐波信号参数检测的相对误差较小,抗干扰能力强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号