首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
海上风电经分频输电线路传输的研究近年来引起国内外的关注。由去除机端换流器的多台基于永磁直驱同步发电机(PMSG)的风电机组、海底电缆和交交变频器组成的分频海上风电系统,可通过线路末端的交交变频器控制PMSG的转速捕获风能,可节省初始投资和运行维护费用。考虑变压器和输电线路的影响后,推导出分频海上风电系统的准稳态模型,基于转子平均磁链定向给出多机矢量控制器的设计原理;从曲线拟合的角度,给出多机组运行频率的求解方法;以4台PMSG为例,搭建了分频海上风电系统仿真模型。结果表明采用多机矢量控制方法,在不同风速条件下,风电机组的转速均能够跟随指令值,并实现风能的最优捕获。  相似文献   

2.
风电机组低电压穿越功能及其应用   总被引:6,自引:0,他引:6  
风电机组低电压穿越(LVRT)能力的深度对机组造价影响很大,根据实际系统对风电机组进行合理的LVRT能力设计很有必要.对变速风电机组LVRT原理进行了理论分析,对多种实现方案进行了比较.在电力系统仿真分析软件DIgSILENT/Power Factory中建立双馈变速风电机组及LVRT功能模型.以地区电网为例,详细分析系统故障对风电机组机端电压的影响,依据不同的风电场接入方案计算风电机组LVRT能力的电压限值,对风电机组进行合理的LVRT能力设计.结果表明,风电机组LVRT能力的深度主要由系统接线和风电场接入方案决定.设计风电机组LVRT能力时,机组运行曲线的电压限值应根据具体接入方案进行分析计算.  相似文献   

3.
钟诚  魏来  严干贵 《电力建设》2016,(12):68-73
随着风电机组安装容量的不断上升,风电系统在电网故障情况下的稳定运行尤为重要,电网导则要求风电机组在电网电压瞬间跌落一定范围内不脱网运行,具备低电压穿越能力(low-voltage ride-through,LVRT)。对于永磁同步风力发电机(permanent magnet synchronous generator,PMSG)机组,快速控制直流电容电压是实现低电压穿越的关键。文章采用一种基于模式切换的PMSG机组低电压穿越控制策略,该策略在电网电压正常和故障时进行控制模式切换,选择网侧变流器或机侧变流器来控制直流电容电压。另外,为加快直流母线控制速度,提出了一种改进前馈方法,加快了控制速度,降低了直流母线电压的峰值。仿真结果验证了所提控制策略的有效性。  相似文献   

4.
双馈风电机组低电压穿越的无功电流分配及控制策略改进   总被引:1,自引:0,他引:1  
为满足风电机组低电压穿越(low voltage ride through,LVRT)的测试要求及其电气模型一致性评估需要,提出考虑向电网注入无功电流的双馈风电机组LVRT的控制策略。在阐述风电机组LVRT测试要求及控制原理的基础上,推导双馈发电机(doubly fed induction generator,DFIG)定子侧及网侧变流器输出无功电流极限表达式,研究电网电压跌落深度和发电机总输出有功功率对其无功电流极限值的影响规律,进而提出DFIG在LVRT期间的无功电流分配算法和改进的有功、无功功率控制策略。最后,以某实际2 MW双馈风电机组为例,分别对风速为5和12 m/s、电网电压对称跌落至20%和50%工况下的LVRT运行性能进行仿真比较和样机测试。与传统LVRT控制方法的对比表明,所提改进控制策略能更好地满足风电机组LVRT的测试要求。样机测试结果进一步证明了改进控制策略和仿真模型的有效性。  相似文献   

5.
随着风电机组装机容量的快速增长,电网对风电场的并网要求不断提高。为了实现不同电网故障(对称、不对称)下的低电压穿越(LVRT)及对电网的无功支撑,文中在全面分析目前国内外风电LVRT技术研究现状及不足的基础上,针对双馈风电机组提出了一种集成软、硬件方案的LVRT综合控制策略。该策略中具有优化投切判据的撬棒(Crowbar)保护电路可根据电网故障类型自动判断投入、切出时间,具有更强的灵活性及适用性;增加无功输出补偿目标的网侧变流器不对称控制的软件方案,使双馈风电机组在故障期间具有无功支撑能力。通过电压跌落发生器模拟电网三相短路和两相接地短路,在一台30kW的双馈风电机组试验平台上进行了实验研究,验证了所提出策略的正确性与有效性。  相似文献   

6.
通过对永磁同步风力发电机(PMSG)系统低电压穿越(LVRT)能力的研究,总结了实现LVRT的几种方法,列举出3种方法的局限性.研究了两种提高PMSG系统LVRT能力的方式:加装卸荷支路和应用超级电容.重点通过PSCAD/EMTDC仿真了当电网电压跌落时对不能实现LVRT的PMSG系统的影响.仿真比较了两种不同LVRT方式的效果,由仿真波形可以观察到应用超级电容方法解决PMSG系统LVRT的效果更好.  相似文献   

7.
电网对并网风电机组有明确的低电压穿越(LVRT)要求,而永磁直驱风电机组实现LVRT功能一般需要增加额外的制动设备,增加了系统成本。针对这个问题,提出一种基于反馈线性化的永磁直驱风电机组LVRT控制技术。该控制策略不同于传统的变流器机侧控制功率、网侧控制直流母线电压的控制方案,而是根据发电机转速和直流母线电压之间的非线性关系,采用反馈线性化理论设计了变流器机侧的直流母线电压控制器,同时在变流器网侧实现了最大功率点跟踪控制。为了验证控制方法的有效性,搭建了永磁直驱风电机组原理样机试验平台,进行了试验研究,试验结果表明在电网三相对称跌落70%时,最大直流电压波动控制在了7%以内。因此,在这种新型的控制策略作用下,永磁直驱风电机组能够很好地实现LVRT功能,同时避免了使用额外的制动单元。  相似文献   

8.
轻型高压直流输电系统(VSC-HVDC)是风电技术的重要发展方向。随着风电比重快速增加,电网对风电机组及其并网系统地低电压穿越(LVRT)能力提出了更高的要求。本文首先分析了电压跌落对VSC-HVDC系统和风电机组的影响,继而简要地总结了风电机组LVRT技术,然后对各种适合于VSC-HVDC风电系统的LVRT方案进行了分析评价,并重点讨论了该风电系统的LVRT协调控制技术。  相似文献   

9.
改善基于双馈感应发电机的并网风电场暂态电压稳定性研究   总被引:14,自引:8,他引:14  
提出了改善基于双馈感应发电机的并网风电场暂态电压稳定性的措施以实现风电场的低电压穿越(low voltage ride through, LVRT)功能。目前,大部分基于双馈感应发电机的变速风电机组不具有故障情况下的暂态电压支持能力,当电网侧发生严重短路故障时,风电场的暂态电压稳定能力会影响到电网安全稳定。该文在DIgSILENT/PowerFactory中建立了具有暂态电压支持能力的变速风电机组转子侧变频器控制模型及用于故障后稳定控制的桨距角控制模型,通过包含风电场的电力系统仿真计算验证了模型的有效性及其对风电机组和电网暂态电压稳定性的贡献。仿真结果表明,当电网侧发生三相短路故障时,风电机组转子侧变频器暂态电压控制能够控制风电机组发出无功功率支持电网电压;桨距角控制能有效降低变速风电机组机械转矩,避免出现风电机组超速及电压失稳。得出结论:采用变频器暂态电压控制及桨距角控制能够改善基于双馈感应发电机的并网风电场的暂态电压稳定性,确保风电机组低电压穿越(LVRT)功能的实现及电网安全稳定。  相似文献   

10.
为了研究永磁直驱风电机组的低电压穿越(LVRT)特性,在实时数字仿真器(RTDS)中建立电网、风力机、发电机与变流器功率部分的模型,模型中的参数与实际机组保持一致,将风电机组主控、变流器控制器与RTDS构成硬件在环测试平台。对风电变流器控制器在LVRT时采用的关键技术进行了研究,在RTDS中模拟各种短路时电网电压跌落工况,得到风电机组LVRT期间的响应波形。基于RTDS的硬件在环实验,既可以对风电机组的控制策略进行研究、优化,又可以从电网角度检验风电机组的LVRT特性是否满足标准要求以及研究对电网的影响。  相似文献   

11.
风速的强随机性与风力发电机建模的不确定性给风力发电系统的优化运行带来了极大的挑战。文中设计了一种新型非线性鲁棒状态估计反馈控制(NRSEFC),从而实现双馈感应发电机的最大功率点跟踪。首先,将风轮机的非线性、发电机参数不确定性以及随机风速的综合影响聚合为一个扰动,同时应用一个滑动模态状态扰动观测器对该扰动进行实时快速估计。随后,将该扰动估计值作为附加控制分量加入状态估计反馈控制中进行在线完全补偿。NRSEFC兼具状态反馈线性控制的结构简单、可靠性高以及非线性鲁棒控制的控制全局一致性和鲁棒性强等双方优点,不依赖于双馈感应发电机系统精确模型且仅需测量转子角速度和无功功率两个状态量。基于阶跃风速、随机风速、发电机参数测量误差以及机端电压跌落4个算例的仿真结果验证了NRSEFC的有效性和鲁棒性。最后,基于dSpace的硬件在环实验验证了所提算法的实际应用性能。  相似文献   

12.
为了在电网电压骤降情况下满足电网对风力发电系统的要求,对无刷双馈电机(BDFG)风力发电系统矢量控制进行了研究,给出了计及电网电压变化时BDFG的控制模型及基于模糊规则参数自整定PI调节器的改进控制策略,并进行了仿真研究.仿真结果表明,该控制方案可以较好地控制BDFG控制绕组电流,降低电磁转矩波动,提高BDFG风力发电系统在电网电压骤降情况下的不间断运行能力.  相似文献   

13.
不平衡电压下双馈异步风力发电系统的建模与控制   总被引:6,自引:9,他引:6  
提出了不平衡电网电压条件下双馈异步发电机(DFIG)在正、反转同步速旋转坐标系中的完整数学模型,推导和分析了不平衡电网电压条件下DFIG定子输出瞬时有功、无功功率组成.在此基础上,提出了小值稳态不平衡电网电压条件下增强DFIG不间断运行能力的4种可供选择的控制方案.讨论了不同不平衡控制目标下转子正、负序电流指令值计算原则,设计了正、反转同步速旋转坐标系中DFIG的双幽转子电流控制器的不平衡控制方案,实现了不平衡电网电压条件下转子正、负序电流的独立跟踪控制,有效地提高了小值稳态不平衡电网条件下风电机组的不间断运行能力.仿真研究验证了理论分析的正确性和所提出的双dq转子电流不平衡控制方案的有效性.  相似文献   

14.
交流励磁变速恒频风力发电机并网控制策略   总被引:32,自引:12,他引:20  
随着风电机组单机容量的不断增大,发电机并网时的电流冲击已不能忽视,必须对并网控制技术进行深入研究。在总结现有风力发电机并网技术的基础上,研究了交流励磁变速恒频风力发电机与电网间的“柔性连接”特性,即可通过励磁控制调节发电机输出以满足并网条件。将磁场定向矢量控制技术移植到并网控制中,建立了交流励磁变速恒频风力发电机并网控制策略,最后进行了实验研究。  相似文献   

15.
双馈风电机组MPPT动态功率特性分析   总被引:2,自引:0,他引:2       下载免费PDF全文
为研究双馈风电机组DFIG最大功率跟踪MPPT动态特性,在Matlab/Simulink仿真平台上建立了功率信号反馈算法的风机MPPT控制模型。以矩形风速为例,理论推导了MPPT静态工作点的过度时间和风机输出能量的计算公式,通过仿真和理论分析了不同转子惯性对风电机组动态功率、转速、叶尖速比、风能利用效率的影响,结合转子动能阐述了双馈风电机组MPPT动态功率特性,指出风机惯性时间常数越大风能利用系数越低。最后比较了几种不同风速下的风机MPPT动态特性,结果表明,随机风的风机转速跟踪能力最差,阵风和渐进风的风机转速跟踪效果较好。  相似文献   

16.
双馈异步发电机(DFIG)在大规模风电并网环境下提供的无功功率无法满足并网需求。虽然引入固定电容器能够提供无功补偿,但系统受功率耦合的影响无法有效实时维持电压稳定。提出了一种静止无功发生器(SVG)与DFIG协调补偿无功的控制策略,同时引入电力系统稳定器(PSS)抑制系统的低频振荡,充分利用DFIG风电机组自身发出无功的能力,减少了SVG的配置容量。在MATLAB/Simulink软件仿真平台建立DFIG风电机组并网模型,仿真结果证实了此控制策略能够完成连续无功补偿,有效维持并网点电压稳定,增强系统输电能力。  相似文献   

17.
电力系统中风电容量的不断增加,对电力系统调频会产生一定的影响.通过在双馈风力发电机组的控制系统中建立频率一功率控制模块,调整风电机组的风能利用率,使风电机组迅速响应系统频率变化,实现风电机组参与系统频率调节的功能.以IEEE 10机39节点为例,在系统发生切机故障导致频率下降时,所提出的方法能使风电机组配合系统调频,在...  相似文献   

18.
针对双馈感应风力发电机(DFIG)电网电压不对称骤升故障,传统的研究大多集中于定子磁链暂态特性的分析,忽略了故障时间对DFIG的影响。以单相和两相不对称骤升故障为例,详细分析了DFIG在不同故障发生时刻的定子磁链暂态特性,并推导出对应的定子磁链和转子电压表达式。此外,DFIG一般运行在单位功率因数下,这忽略了其自身RSC和GSC的无功协调能力。针对这一问题,提出了DFIG无功协调控制方案,以此帮助风电系统实现穿越故障。仿真结果验证了暂态特性推导的正确性以及RSC和GSC无功协调控制方案的有效性,所提控制策略有效抑制了并网点电压的骤升,同时满足了系统无功支撑的需求。  相似文献   

19.
超导储能改善并网风电场稳定性的研究   总被引:20,自引:0,他引:20  
建立了风电机组和超导储能(SMES)装置的数学模型以研究SMES对并网风电场运行稳定性的改善.针对风电系统中经常出现的联络线短路故障和风电场的风速扰动,提出利用SMES安装点的电压偏差作为SMES有功控制器的控制信号的策略.对实例系统进行的仿真计算结果表明,SMES采用该控制策略,不仅可以在网络故障后有效地提高风电场的稳定性,而且能够在快速的风速扰动下平滑风电场的功率输出,降低风电场对电网的冲击.  相似文献   

20.
通过发电机控制绕组侧的励磁变换器灵活调节系统所需的励磁无功功率,定子双绕组感应电机(DWIG)风力发电系统可在宽风速范围内输出稳定的高压直流,无需增加升压变换器即可并网运行,并且系统的控制策略有助于提高系统对电压跌落等故障的穿越能力。文中通过构建并网型DWIG风力发电系统的Simulink仿真模型,对系统运行在各种功率因数状态下的跌落特性及跌落期间对电网的无功功率支持进行全面仿真。结果证明,无需增加额外的卸载单元,DWIG风力发电系统即可实现较强的低电压穿越能力,在不同功率因数下均能稳定安全运行,且能在电压跌落故障期间提供一定的无功功率支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号