首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
分析研究了分叉理论应用于无功补偿对电压稳定性影响等问题。分叉理论比较全面地考虑系统的非线性性态,能够比传统的分析方法更深刻地探讨电力系统在临界点附近的稳定问题。  相似文献   

2.
针对非故障引起无功补偿不足的问题,利用实际数值进行分析,找到其根源.根据负荷情况,参照补偿容量计算方法,得出理论需要的无功功率补偿量,然后选择适当的电容器额定电压,并对电容器的容量进行选择和修正,从而解决电容器补偿不足的问题.  相似文献   

3.
晶闸管控制的静止有源无功补偿器的研究   总被引:2,自引:0,他引:2  
介绍一种采用可投切电容器的新型静止无功补偿器。它的主要优点是能提供无级变化的无功电流、且不产生谐波。文中给出了详细的理论分析和计算方法及部分实验结果。  相似文献   

4.
首先结合基于瞬时无功功率理论的负序和无功综合补偿的策略来实现对不平衡负荷及负荷的功率因数进行补偿,然后通过改进负序和无功综合补偿方法来改善过补偿问题。  相似文献   

5.
基于MATLAB仿真的无功补偿应用研究   总被引:1,自引:1,他引:0  
在电力系统中,无功功率对保证电能质量和安全可靠运行是必不可少的,由于选取无功功率补偿容量是一个比较复杂的问题,实际投运结果会因为电压偏移而导致与理论计算结果产生偏差。本文通过分析一个简单的电力系统,结合具体工程实际,运用MATLAB软件,建立无功功率补偿仿真系统模型,仿真结果表明,运用MATLAB仿真系统可以比较准确地模拟补偿量对电力系统的影响,对无功补偿量的选取及投入方式有实际的应用意义。  相似文献   

6.
针对廊坊地区变电站谐波和电压问题比较严重的现实,提出了适合变电站运行的10kV新型动态无功补偿与谐波抑制技术。介绍了该技术的基本原理,分析了控制保护系统的基本功能和总体结构,对可控电抗器系统和滤波系统进行了仿真,仿真结果证明了理论分析和系统设计的正确性。该技术具有自适应地调节无功补偿度,达到动态无功补偿和谐波抑制的综合调节的目的,时解决变电站的谐波无功治理具有一定的推广应用价值。  相似文献   

7.
王志洁  季美红 《江苏电器》2009,(6):29-31,51
介绍了低压并联电容器补偿方式、补偿容量的确定及元器件的配置,解决了工程实施中的主要技术问题。根据低压配电系统的无功功率实际需求情况,考虑负载的性质,确定补偿方案;从理论和工程应用的角度,确定补偿容量:并对制作无功补偿装置的主要元器件的性能进行分析,为选型提供了重要的参考价值。  相似文献   

8.
电力系统无功补偿及谐波抑制智能系统   总被引:1,自引:0,他引:1  
针对电力系统中日益严重的谐波问题和无功补偿问题,采用人工神经网络、模糊逻辑、遗传算法等智能信息处理技术,结合小波分析,粗糙集等理论,运用有源滤波和无源滤波两种手段,建立电力系统无功补偿和谐波抑制智能系统,达到提高功率因数和抑制谐波的目的。  相似文献   

9.
电容器组的容差分析与保护设计   总被引:1,自引:1,他引:0  
用随机误差理论对电容器组的电容误差值(简称容差)进行了分析研究与计算。并对电容器组中多台电容器故障时,不同保护方案的动作整定值及可靠性与灵敏度等问题进行了较为深入地研究与比较,提出了可行指数的概念,确定出不同保护方案的适用范围,为实际工程中合理选择最佳保护方案提供了理论依据。  相似文献   

10.
基于瞬时对称分量法的电网无功补偿方法   总被引:1,自引:0,他引:1  
针对电网无功补偿需测量相角,无法实现实时补偿的问题,提出一种实时求取系统无功功率的方法,它将瞬时无功理论和对称分量法相结合,利用实时序分量功率实现系统无功补偿,并将其应用在有电弧炉的配电网系统中。MATLAB仿真表明:该方法可以实现三相不平衡系统的无功功率补偿且没有时间延迟,从而保证了无功功率的稳定,解决了无功功率波动引起的电压波动问题。  相似文献   

11.
运用分岔理论研究电力系统电压稳定性   总被引:2,自引:0,他引:2  
赵兴勇  张秀彬 《高电压技术》2007,33(11):190-194
为研究电力系统电压稳定性问题,用分岔理论的基本原理分析了电力系统中常见的分岔现象及其对电压稳定的影响。从静态分岔和动态分岔两个方面阐述了分岔理论在电压稳定分析中的具体应用后,论述了引起电压失稳的鞍结点分岔(SNB)、Hopf分岔(HB)及奇异诱导分岔(SIB)等3种主要分岔形式的定义、分岔发生的条件及分岔点的数值计算方法,并给出了相应的数学模型及适应范围,比较了各种分析方法的优缺点,还讨论了各种分岔之间相互作用对电压稳定的影响。最后,展望了分岔理论在电压稳定分析应用中需进一步深入探讨的问题。  相似文献   

12.
分岔理论在电力系统电压稳定研究中的应用述评   总被引:6,自引:0,他引:6       下载免费PDF全文
首先简要介绍了分岔的基本概念,然后从静态分岔和动态分岔两个方面,评述了分岔理论在电压稳定研究中的应用情况。重点介绍了鞍节分岔点和Hopf分岔点的求取算法,分析了各种算法的优缺点,并简要介绍了奇异诱导分岔在动态电压稳定分析中的应用情况,最后对分岔理论在电压稳定研究应用中的前景进行了展望。  相似文献   

13.
应用分叉理论研究负荷特性对电力系统电压稳定性的影响   总被引:7,自引:2,他引:7  
本文应用分叉理论研究系统临界点的行为,在给出两个引理的基础上,证明了参数大范围变化时系统电压发生失稳分叉的判别定理,从理论上分析了几种典型负荷静特性对电压稳定性的影响,同时也提出了一些新观点。  相似文献   

14.
杨秀  陈鸿煜 《高电压技术》2008,34(3):533-536
为提高系统电压稳定水平,防止电压崩溃事故的发生,基于非线性动力系统的分岔理论,使用通用分岔分析软件AUTO2000对一个典型的3节点系统进行电压稳定的分析,得出了系统在3种不同发电机模型下的分岔点数值。研究发现,不同发电机模型的系统经历的分岔过程不同,说明系统的电压稳定性随着发电机模型的不同而不同。但系统在到达鞍节点分岔前,都因为发生了Hopf分岔而失稳,因此Hopf分岔才是系统失稳的原因。研究还发现跟踪Hopf分岔点开始的极限环曲线可见系统还会经历一系列其它复杂分岔:环面折叠分岔、倍周期分岔和环面分岔;在不同的发电机模型下,系统因为不同的动态分岔点而失稳。时域仿真验证了此结论。  相似文献   

15.
随着非线性科学理论研究的发展,分叉理论作为研究非线性系统的新方法被引入电压稳定研究中。简要介绍了分叉的基本概念和主要分叉点类型,然后以基于Matlab的分叉分析软件包Matcont为工具,应用分叉理论,对典型的不含FACTS装置和含FACTS装置进行电压稳定的分析。最后重点对Matcont得出的数据进行了详细的分析,研究发现,通过添加FACTS装置,可以有效减少分叉点数量,增加负荷极限,从而提高了系统电压稳定性。  相似文献   

16.
何兴隆 《电气开关》2010,48(3):8-10,13
简单介绍电力系统中的一些分叉现象,着重分析了引起电压失稳的鞍结分叉(SNB)、霍普夫分叉(HB)以及奇异诱导分叉(SIB)等三种主要分叉形式的定义和分岔发生的条件,并通过数值仿真具体讨论了电压稳定性与鞍结分叉、霍普夫分叉之间的关系,力求从动力系统的角度来理解并解释电压稳定性。最后,展望了分叉理论在电压稳定分析中需进一步深入研究的问题。  相似文献   

17.
分岔方法及其在电力系统中的应用   总被引:4,自引:3,他引:1  
本文给出了可用来分析电力系统电压稳定和周期振荡的分岔理论中的有关转折分岔和Hopf分岔的概念、定理,并根据两类描述电力系统方程:微分方程和代数方程,结合降维方法如LS约化方法、中心流形方法介绍了求解分岔点的方法以及分岔理论在电力系统中的应用。  相似文献   

18.
应用分岔理论分析SVC对电力系统电压稳定性的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
基于分岔理论的电力系统电压稳定分析对于深入理解电压失稳机理有重要意义,特别是对于灵活交流输电系统,如静止无功补偿器等,分岔理论能够有效分析系统的动态控制特性对电压稳定的影响。利用非线性动力系统的分岔理论,使用通用分岔分析软件AUTO2000对典型的含SVC系统和不含SVC系统进行电压稳定的分析,得出了系统在两种情况下的分岔点数值。研究发现,通过添加静止无功补偿器(SVC),可以延迟系统的Hopf分岔点和鞍结分岔点,增加负荷极限,从而提高了系统电压稳定性。之后又通过双参数分岔分析确定了两维分岔边界。结果表明,在使用SVC控制器提高系统电压稳定性时,要详细考虑其参数对系统中各种分岔的影响,综合优化控制器的设计和安装。  相似文献   

19.
为研究区域负荷模型对交直流混联系统电压稳定性的影响,以3机9节点交直流混联电力系统为例,建立考虑系统各元件动态特性的数学模型,采用分岔理论与局部参数化的延拓法相结合的方法对系统的平衡解流形进行追踪,并对影响系统稳定的鞍结分岔点、霍普夫分岔点进行搜索和检测。在此基础上,针对不同负荷增长方式对电压稳定性的影响进行研究,重点分析比较国家电网各区域电网调度部门、规划部门所采用的负荷模型对电压稳定影响的异同。研究表明:以全网负荷同比增长方式增加负荷时系统静、动态负荷裕度最小,最不利于系统的稳定性;随着负荷模型中异步感应电动机比例的不断增加,分岔边界曲线前移,各类型分岔点出现时间缩短,系统的电压稳定裕度减小,电压稳定性将受到更大的威胁。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号